Spatial Data Analysis in the Social and Environmental Sciences


Book Description

Within both the social and environmental sciences, much of the data collected is within a spatial context and requires statistical analysis for interpretation. The purpose of this book is to describe current methods for the analysis of spatial data. Methods described include data description, map interpolation, and exploratory and explanatory analyses. The book also examines spatial referencing, and methods for detecting problems, assessing their seriousness and taking appropriate action are discussed. This is an important text for any discipline requiring a broad overview of current theoretical and applied work for the analysis of spatial data sets. It will be of particular use to research workers and final year undergraduates in the fields of geography, environmental sciences and social sciences.




Spatial Data Analysis


Book Description

Spatial Data Analysis: Theory and Practice, first published in 2003, provides a broad ranging treatment of the field of spatial data analysis. It begins with an overview of spatial data analysis and the importance of location (place, context and space) in scientific and policy related research. Covering fundamental problems concerning how attributes in geographical space are represented to the latest methods of exploratory spatial data analysis and spatial modeling, it is designed to take the reader through the key areas that underpin the analysis of spatial data, providing a platform from which to view and critically appreciate many of the key areas of the field. Parts of the text are accessible to undergraduate and master's level students, but it also contains sufficient challenging material that it will be of interest to geographers, social and economic scientists, environmental scientists and statisticians, whose research takes them into the area of spatial analysis.




Spatial Analysis for the Social Sciences


Book Description

This book shows how to model the spatial interactions between actors that are at the heart of the social sciences.




Spatial Analysis Methods and Practice


Book Description

This is an introductory textbook on spatial analysis and spatial statistics through GIS. Each chapter presents methods and metrics, explains how to interpret results, and provides worked examples. Topics include: describing and mapping data through exploratory spatial data analysis; analyzing geographic distributions and point patterns; spatial autocorrelation; spatial clustering; geographically weighted regression and OLS regression; and spatial econometrics. The worked examples link theory to practice through a single real-world case study, with software and illustrated guidance. Exercises are solved twice: first through ArcGIS, and then GeoDa. Through a simple methodological framework the book describes the dataset, explores spatial relations and associations, and builds models. Results are critically interpreted, and the advantages and pitfalls of using various spatial analysis methods are discussed. This is a valuable resource for graduate students and researchers analyzing geospatial data through a spatial analysis lens, including those using GIS in the environmental sciences, geography, and social sciences.




Geographic Information Systems for the Social Sciences


Book Description

Geographic Information Systems for the Social Sciences: Investigating Space and Place is the first book to take a cutting-edge approach to integrating spatial concepts into the social sciences. In this text, authors Steven J. Steinberg and Sheila L. Steinberg simplify GIS (Geographic Information Systems) for practitioners and students in the social sciences through the use of examples and actual program exercises so that they can become comfortable incorporating this research tool into their repertoire and scope of interest. The authors provide learning objectives for each chapter, chapter summaries, links to relevant Web sites, as well as suggestions for student research projects.




Applied Geospatial Data Science with Python


Book Description

Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python The book includes colored images of important concepts Key Features Learn how to integrate spatial data and spatial thinking into traditional data science workflows Develop a spatial perspective and learn to avoid common pitfalls along the way Gain expertise through practical case studies applicable in a variety of industries with code samples that can be reproduced and expanded Book DescriptionData scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python. Throughout this book, you’ll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You’ll learn how to read, process, and manipulate spatial data effectively. With data in hand, you’ll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you’ll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries. By the end of the book, you’ll be able to tackle random data, find meaningful correlations, and make geospatial data models.What you will learn Understand the fundamentals needed to work with geospatial data Transition from tabular to geo-enabled data in your workflows Develop an introductory portfolio of spatial data science work using Python Gain hands-on skills with case studies relevant to different industries Discover best practices focusing on geospatial data to bring a positive change in your environment Explore solving use cases, such as traveling salesperson and vehicle routing problems Who this book is for This book is for you if you are a data scientist seeking to incorporate geospatial thinking into your workflows or a GIS professional seeking to incorporate data science methods into yours. You’ll need to have a foundational knowledge of Python for data analysis and/or data science.




An Introduction to Spatial Data Analysis


Book Description

This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts




Spatial Regression Models for the Social Sciences


Book Description

Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us.




Applied Spatial Data Analysis with R


Book Description

Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.




Data Analysis and Statistics for Geography, Environmental Science, and Engineering


Book Description

Providing a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain