Spatial Light Modulator Technology


Book Description

This work offers comprehensive coverage of all aspects of spatial light modulators, from the various optical materials used for modulation, through the availability and characteristics of specific devices, to the main applications of SLMs and related systems. The gamut of SLMs is surveyed, including multiple-quantum-well, acousto-optical, magneto-optical, deformable-membrane, ferroelectric-liquid-crystal and smart-pixel modulators.




Optical Imaging and Metrology


Book Description

A comprehensive review of the state of the art and advances in the field, while also outlining the future potential and development trends of optical imaging and optical metrology, an area of fast growth with numerous applications in nanotechnology and nanophysics. Written by the world's leading experts in the field, it fills the gap in the current literature by bridging the fields of optical imaging and metrology, and is the only up-to-date resource in terms of fundamental knowledge, basic concepts, methodologies, applications, and development trends.




Phase-Only 128x128 Spatial Light Modulator Based on Laslm Technology


Book Description

This contract was for the purpose of building 128xl28 pixel spatial light modulator capable of phase-only modulation using TI's unique flexure beam deformable mirror device (DMD) technology. The flexure beam DMD contains mirror elements that move vertically in response to an electrostatic force. The resulting piston-like motion provides broad range analog phase modulation with minimal amplitude modulation. Problems in the CCD addressing prevented the completion and delivery of a fully functioning device. Optical processing, Spatial light modulators, Phase-only filters, Target recognition, Electro-optic devices.




Liquid Crystal on Silicon Devices


Book Description

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 μm), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.




How to Shape Light with Spatial Light Modulators


Book Description

Structuring light is a ubiquitous laboratory tool, and computer-controlled devices such as spatial light modulators (SLMs) can reshape an input beam into almost any desired output beam. This Spotlight ranges the basic principles of these devices to some of the most advanced techniques in beam shaping. Many examples have been included to make this guide more comprehensive and help those shaping beams with a SLM for the first time. The provided examples are based in MATLAB, but they can be easily adapted to other programing languages. Readers need only an undergraduate level of mathematics and a basic knowledge of programming.







Spatial Light Modulators


Book Description







Spatial Light Modulation as a Flexible Platform for Optical Systems


Book Description

Spatial light modulation is a technology with a demonstrated wide range of applications, especially in optical systems. Among the various spatial light modulator (SLM) technologies, e.g., liquid crystal (LC), magneto-optic, deformable mirror, multiple quantum well, and acoustic-optic Bragg cells, the ones based on liquid crystal on silicon (LCoS) have been gaining importance and relevance in a plethora of optical contexts, namely, in telecom, metrology, optical storage, and microdisplays. Their implementation in telecom has enabled the development of high-capacity optical components in system functionalities as multiplexing/demultiplexing, switching and optical signal processing. This technology combines the unique light-modulating properties of LC with the high-performance silicon complementary metal oxide semiconductor properties. Different types of modulation, i.e., phase, amplitude or combination of the two, can be achieved. In this book chapter, we address the most relevant applications of phase-only LCoS SLM for optical telecom purposes and the employment of SLM technology in photonic integrated circuits (PICs) (e.g., field-programmable silicon photonic (SiP) circuits and integrated SLM application to create versatile reconfigurable elements). Furthermore, a new SLM-based flexible coupling platform with applications in spatial division multiplexing (SDM) systems (e.g., to efficiently excite different cores in MCF) and characterization/testing of photonic integrated processors will be described.




Telecommunication Systems


Book Description

This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study.