Special Functions for Scientists and Engineers


Book Description

Physics, chemistry, and engineering undergraduates will benefit from this straightforward guide to special functions. Its topics possess wide applications in quantum mechanics, electrical engineering, and many other fields. 1968 edition. Includes 25 figures.




Theory and Applications of Special Functions for Scientists and Engineers


Book Description

This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.




Special Functions for Applied Scientists


Book Description

This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.




Special Functions of Mathematics for Engineers


Book Description

Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.







Special Functions for Optical Science and Engineering


Book Description

This tutorial text is for those who use special functions in their work or study but are not mathematicians. Traditionally, special functions arise as solutions to certain linear second-order differential equations with variable coefficients. This book introduces these differential equations, their solutions, and their applications in optical science and engineering.




Computation of Special Functions


Book Description

Computation of Special Functions is a valuable book/software package containing more than 100 original computer programs for the computation of most special functions currently in use. These include many functions commonly omitted from available software packages, such as the Bessel and modified Bessel functions, the Mathieu and modified Mathieu functions, parabolic cylinder functions, and various prolate and oblate spheroidal wave functions. Also, unlike most software packages, this book/disk set gives readers the latitude to modify programs according to the special demands of the sophisticated problems they are working on. The authors provide detailed descriptions of the program's algorithms as well as specific information about each program's internal structure.




Theory and Applications of Special Functions for Scientists and Engineers


Book Description

This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.




Mathematical Handbook for Scientists and Engineers


Book Description

Convenient access to information from every area of mathematics: Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, game theory, much more.




Advanced Mathematical Methods for Scientists and Engineers I


Book Description

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.