Special Inorganic Cements


Book Description

The only book to cover the use of special inorganic cements instead of standard Portland cement in certain specialist applications, such as oil well drilling or in a high temperature location. Special Inorganic Cements draws together information which is widely scattered in the technical literature. It describes various special cements, their chemistry and mineralogy along with the appropriate manufacturing processes, their hydration and hydration properties, and their applications.




Structure and Performance of Cements, Second Edition


Book Description

Drawing together a multinational team of authors, this second edition of Structure and Performance of Cements highlights the latest global advances in the field of cement technology. Three broad categories are covered: basic materials and methods, cement extenders, and techniques of examination. Within these categories consideration has been given to environmental issues such as the use of waste materials in cement-burning as supplementary fuels and new and improved methods of instrumentation for examining structural aspects and performance of cements. This book also covers cement production, mineralogy and hydration, as well as the mechanical properties of cement, and the corrosion and durability of cementitious systems. Special cements are included, along with calcium aluminate and blended cements together with a consideration of the role of gypsum in cements. Structure and Performance of Cements is an invaluable key reference for academics, researchers and practitioners alike.







Cement Chemistry


Book Description

A revised and updated text on cement chemistry. This edition forms a comprehensive and in-depth reference work that explains in detail all aspects of cement chemistry.




The Chemistry of Inorganic Biomaterials


Book Description

This book overviews the underlying chemistry behind the most common and cutting-edge inorganic materials in current use, or approaching use, in vivo.




Cementitious Materials for Nuclear Waste Immobilization


Book Description

Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.




Materials for Construction and Civil Engineering


Book Description

This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: · Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure · Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes · Addresses topics important to professionals working with structural materials, such as corrosion, nanomaterials, materials life cycle, not often covered outside of journal literature · Diverse author team presents expect perspective from civil engineering, construction, and architecture · Features a detailed glossary of terms and over 400 illustrations




Joining of Materials and Structures


Book Description

Joining of Materials and Structures is the first and only complete and highly readable treatment of the options for joining conventional materials and the structures they comprise in conventional and unconventional ways, and for joining emerging materials and structures in novel ways. Joining by mechanical fasteners, integral designed-or formed-in features, adhesives, welding, brazing, soldering, thermal spraying, and hybrid processes are addressed as processes and technologies, as are issues associated with the joining of metals, ceramics (including cement and concrete) glass, plastics, and composites (including wood), as well as, for the first time anywhere, living tissue. While focused on materials issues, issues related to joint design, production processing, quality assurance, process economics, and joint performance in service are not ignored. The book is written for engineers, from an in-training student to a seasoned practitioner by an engineer who chose to teach after years of practice. By reading and referring to this book, the solutions to joining problems will be within one's grasp. Key Features: · Unprecedented coverage of all joining options (from lashings to lasers) in 10 chapters · Uniquely complete coverage of all materials, including living tissues, in 6 chapters · Richly illustrated with 76 photographs and 233 illustrations or plots · Practice Questions and Problems for use as a text of for reviewing to aid for comprehension * Coverage all of major joining technologies, including welding, soldering, brazing, adhesive and cement bonding, pressure fusion, riveting, bolting, snap-fits, and more * Organized by both joining techniques and materials types, including metals, non-metals, ceramics and glasses, composites, biomaterials, and living tissue * An ideal reference for design engineers, students, package and product designers, manufacturers, machinists, materials scientists




Supplementary Cementing Materials in Concrete


Book Description

Supplementary cementing materials (SCMs), such as fly ash, slag, silica fume, and natural pozzolans, make a significant difference to the properties of concrete but are rarely understood in any detail. SCMs can influence the mechanical properties of concrete and improve its durability in aggressive environments. Supplementary Cementing Materials in




Advanced Concrete Technology


Book Description

Advanced Concrete Technology A thorough grounding in the science of concrete combined with the latest developments in the rapidly evolving field of concrete technology In the newly revised second edition of Advanced Concrete Technology, a distinguished team of academics and engineers delivers a state-of-the-art exploration of modern and advanced concrete technologies developed during the last decade. The book combines the essential concepts and theory of concrete with practical examples of material design, composition, processing, characterization, properties, and performance. The authors explain, in detail, the hardware and software of concrete, and offer readers discussions of the most recent advances in concrete technology, including, but not limited to, concrete recycling, nanotechnology, microstructural simulation, additive manufacturing, and non-destructive testing methods. This newest edition of Advanced Concrete Technology provides a sustained emphasis on sustainable and novel technologies, like new binders, 3D printing, and other advanced materials and techniques. Readers will also find: A thorough introduction to concrete, including its definition and its historical evolution as a material used in engineering and construction In-depth explorations of the materials for making concrete and the properties of fresh concrete Comprehensive discussions of the material structure of concrete, hardened concrete, and advanced cementitious composites Fulsome treatments of concrete fracture mechanics, non-destructive testing in concrete engineering, and future trends in concrete Perfect for undergraduate and graduate students studying civil or materials engineering—especially those taking classes in the properties of concrete or concrete technologies—as well as engineers in the concrete industry. Advanced Concrete Technology, 2nd Edition will also earn a place in the libraries of civil and materials engineers working in the industry.