Nonlinearity, Complexity and Randomness in Economics


Book Description

Nonlinearity, Complexity and Randomness in Economics presents a variety of papers by leading economists, scientists, and philosophers who focus on different aspects of nonlinearity, complexity and randomness, and their implications for economics. A theme of the book is that economics should be based on algorithmic, computable mathematical foundations. Features an interdisciplinary collection of papers by economists, scientists, and philosophers Presents new approaches to macroeconomic modelling, agent-based modelling, financial markets, and emergent complexity Reveals how economics today must be based on algorithmic, computable mathematical foundations




Randomness and Recurrence in Dynamical Systems: A Real Analysis Approach


Book Description

Randomness and Recurrence in Dynamical Systems aims to bridge a gap between undergraduate teaching and the research level in mathematical analysis. It makes ideas on averaging, randomness, and recurrence, which traditionally require measure theory, accessible at the undergraduate and lower graduate level. The author develops new techniques of proof and adapts known proofs to make the material accessible to students with only a background in elementary real analysis. Over 60 figures are used to explain proofs, provide alternative viewpoints and elaborate on the main text. The book explains further developments in terms of measure theory. The results are presented in the context of dynamical systems, and the quantitative results are related to the underlying qualitative phenomena—chaos, randomness, recurrence and order. The final part of the book introduces and motivates measure theory and the notion of a measurable set, and describes the relationship of Birkhoff's Individual Ergodic Theorem to the preceding ideas. Developments in other dynamical systems are indicated, in particular Lévy's result on the frequency of occurence of a given digit in the partial fractions expansion of a number.




Chaos, Nonlinearity, Complexity


Book Description

This book explores non-extensive statistical mechanics in non-equilibrium thermodynamics, and presents an overview of the strong nonlinearity of chaos and complexity in natural systems, drawing on relevant mathematics from topology, measure-theory, inverse and ill-posed problems, set-valued analysis, and nonlinear functional analysis. It offers a self-contained theory of complexity and complex systems as the steady state of non-equilibrium systems, denoting a homeostatic dynamic equilibrium between stabilizing order and destabilizing disorder.




NBS Special Publication


Book Description




Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-excited Attractors


Book Description

In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: self-excited attractors and hidden attractors. The localization of self-excited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with non-hyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phase-locked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with self-excited attractors and hidden attractors.




Unsolved Problems in Ecology


Book Description

"This volume provides a series of essays on open questions in ecology with the overarching goal being to outline to the most important, most interesting or most fundamental problems in ecology that need to be addressed. The contributions span ecological subfields, from behavioral ecology and population ecology to disease ecology and conservation and range in tone from the technical to more personal meditations on the state of the field. Many of the chapters start or end in moments of genuine curiosity, like one which takes up the question of why the world is green or another which asks what might come of a thought experiment in which we "turn-off" evolution entirely"--




Self-Modifying Systems in Biology and Cognitive Science


Book Description

The theme of this book is the self-generation of information by the self-modification of systems. The author explains why biological and cognitive processes exhibit identity changes in the mathematical and logical sense. This concept is the basis of a new organizational principle which utilizes shifts of the internal semantic relations in systems. There are mathematical discussions of various classes of systems (Turing machines, input-output systems, synergetic systems, non-linear dynamics etc), which are contrasted with the author's new principle. The most important implications of this include a new conception on the nature of information and which also provides a new and coherent conceptual view of a wide class of natural systems. This book merits the attention of all philosophers and scientists concerned with the way we create reality in our mathematical representations of the world and the connection those representations have with the way things really are.




Reviews of Nonlinear Dynamics and Complexity


Book Description

Adopting a cross-disciplinary approach, the review character of this monograph sets it apart from specialized journals. The editor is advised by a first-class board of international scientists, such that the carefully selected and invited contributions represent the latest and most relevant findings.




Permutation Complexity in Dynamical Systems


Book Description

The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems. Since its inception in 2002 the concept of permutation entropy has sparked a new branch of research in particular regarding the time series analysis of dynamical systems that capitalizes on the order structure of the state space. Indeed, on one hand ordinal patterns and periodic points are closely related, yet ordinal patterns are amenable to numerical methods, while periodicity is not. Another interesting feature is that since it can be shown that random (unconstrained) dynamics has no forbidden patterns with probability one, their existence can be used as a fingerprint to identify any deterministic origin of orbit generation. This book is primarily addressed to researchers working in the field of nonlinear dynamics and complex systems, yet will also be suitable for graduate students interested in these subjects. The presentation is a compromise between mathematical rigor and pedagogical approach. Accordingly, some of the more mathematical background needed for more in depth understanding has been shifted into the appendices.




Complexity and Nonlinearity in Cardiovascular Signals


Book Description

This book reports on the latest advances in complex and nonlinear cardiovascular physiology aimed at obtaining reliable, effective markers for the assessment of heartbeat, respiratory, and blood pressure dynamics. The chapters describe in detail methods that have been previously defined in theoretical physics such as entropy, multifractal spectra, and Lyapunov exponents, contextualized within physiological dynamics of cardiovascular control, including autonomic nervous system activity. Additionally, the book discusses several application scenarios of these methods. The text critically reviews the current state-of-the-art research in the field that has led to the description of dedicated experimental protocols and ad-hoc models of complex physiology. This text is ideal for biomedical engineers, physiologists, and neuroscientists. This book also: Expertly reviews cutting-edge research, such as recent advances in measuring complexity, nonlinearity, and information-theoretic concepts applied to coupled dynamical systems Comprehensively describes applications of analytic technique to clinical scenarios such as heart failure, depression and mental disorders, atrial fibrillation, acute brain lesions, and more Broadens readers' understanding of cardiovascular signals, heart rate complexity, heart rate variability, and nonlinear analysis