16th IEEE VLSI Test Symposium


Book Description




IEEE VLSI Test Symposium


Book Description







Evolvable Systems: From Biology to Hardware


Book Description

This book constitutes the refereed proceedings of the Third International Conference on Evolvable Systems: From Biology to Hardware, ICES 2000, held in Edinburgh, Scotland, UK, in April 2000. The 27 revised full papers presented were carefully reviewed and selected for inclusion in the proceedings. Among the topics covered are evaluation of digital systems, evolution of analog systems, embryonic electronics, bio-inspired systems, artificial neural networks, adaptive robotics, adaptive hardware platforms, molecular computing, reconfigurable systems, immune systems, and self-repair.




Evolvable Systems: From Biology to Hardware


Book Description

This book constitutes the refereed proceedings of the Third International Conference on Evolvable Systems: From Biology to Hardware, ICES 2000, held in Edinburgh, Scotland, UK, in April 2000. The 27 revised full papers presented were carefully reviewed and selected for inclusion in the proceedings. Among the topics covered are evaluation of digital systems, evolution of analog systems, embryonic electronics, bio-inspired systems, artificial neural networks, adaptive robotics, adaptive hardware platforms, molecular computing, reconfigurable systems, immune systems, and self-repair.




Index of Conference Proceedings


Book Description




Asian Test Symposium


Book Description




Defect and Fault Tolerance in VLSI Systems


Book Description

DFT 2004 showcases the latest research results in the in the field of defect and fault tolerance in VLSI systems. Its papers cover yield, defect and fault tolerance, error correction, and circuit/system reliability and dependability.




Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits


Book Description

The modern electronic testing has a forty year history. Test professionals hold some fairly large conferences and numerous workshops, have a journal, and there are over one hundred books on testing. Still, a full course on testing is offered only at a few universities, mostly by professors who have a research interest in this area. Apparently, most professors would not have taken a course on electronic testing when they were students. Other than the computer engineering curriculum being too crowded, the major reason cited for the absence of a course on electronic testing is the lack of a suitable textbook. For VLSI the foundation was provided by semiconductor device techn- ogy, circuit design, and electronic testing. In a computer engineering curriculum, therefore, it is necessary that foundations should be taught before applications. The field of VLSI has expanded to systems-on-a-chip, which include digital, memory, and mixed-signalsubsystems. To our knowledge this is the first textbook to cover all three types of electronic circuits. We have written this textbook for an undergraduate “foundations” course on electronic testing. Obviously, it is too voluminous for a one-semester course and a teacher will have to select from the topics. We did not restrict such freedom because the selection may depend upon the individual expertise and interests. Besides, there is merit in having a larger book that will retain its usefulness for the owner even after the completion of the course. With equal tenacity, we address the needs of three other groups of readers.




On-Line Testing for VLSI


Book Description

Test functions (fault detection, diagnosis, error correction, repair, etc.) that are applied concurrently while the system continues its intended function are defined as on-line testing. In its expanded scope, on-line testing includes the design of concurrent error checking subsystems that can be themselves self-checking, fail-safe systems that continue to function correctly even after an error occurs, reliability monitoring, and self-test and fault-tolerant designs. On-Line Testing for VLSI contains a selected set of articles that discuss many of the modern aspects of on-line testing as faced today. The contributions are largely derived from recent IEEE International On-Line Testing Workshops. Guest editors Michael Nicolaidis, Yervant Zorian and Dhiraj Pradhan organized the articles into six chapters. In the first chapter the editors introduce a large number of approaches with an expanded bibliography in which some references date back to the sixties. On-Line Testing for VLSI is an edited volume of original research comprising invited contributions by leading researchers.