Dynamics and Control of Structures


Book Description

This book addresses problems in structural dynamics and control encountered in applications such as robotics, aerospace structures, earthquake-damage prevention, and active noise suppression. The rapid developments of new technologies and computational power have made it possible to formulate and solve engineering problems that seemed unapproachable only a few years ago. This presentation combines concepts from control engineering (such as system norms and controllability) and structural engineering (such as modal properties and models), thereby revealing new structural properties as well as giving new insight into well-known laws. This book will assist engineers in designing control systems and dealing with the complexities of structural dynamics.




Dynamics and Control of Structures


Book Description

A text/reference on analysis of structures that deform in use. Presents a new, integrated approach to analytical dynamics, structural dynamics and control theory and goes beyond classical dynamics of rigid bodies to incorporate analysis of flexibility of structures. Includes real-world examples of applications such as robotics, precision machinery and aircraft structures.




Structural Dynamics, Volume 3


Book Description

This the fifth volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010,, brings together 146 chapters on Structural Dynamics. It presents early findings from experimental and computational investigations of on a wide range of area within Structural Dynamics, including studies such as Simulation and Validation of ODS Measurements made Using a Continuous SLDV Method on a Beam Excited by a Pseudo Random Signal, Comparison of Image Based, Laser, and Accelerometer Measurements, Modal Parameter Estimation Using Acoustic Modal Analysis, Mitigation of Vortex-induced Vibrations in Long-span Bridges, and Vibration and Acoustic Analysis of Brake Pads for Quality Control.




Advanced Structural Dynamics and Active Control of Structures


Book Description

Science is for those who learn; poetry for those who know. —Joseph Roux This book is a continuation of my previous book, Dynamics and Control of Structures [44]. The expanded book includes three additional chapters and an additional appendix: Chapter 3, “Special Models”; Chapter 8, “Modal Actuators and Sensors”; and Chapter 9, “System Identification. ” Other chapters have been significantly revised and supplemented with new topics, including discrete-time models of structures, limited-time and -frequency grammians and reduction, almo- balanced modal models, simultaneous placement of sensors and actuators, and structural damage detection. The appendices have also been updated and expanded. Appendix A consists of thirteen new Matlab programs. Appendix B is a new addition and includes eleven Matlab programs that solve examples from each chapter. In Appendix C model data are given. Several books on structural dynamics and control have been published. Meirovitch’s textbook [108] covers methods of structural dynamics (virtual work, d’Alambert’s principle, Hamilton’s principle, Lagrange’s and Hamilton’s equations, and modal analysis of structures) and control (pole placement methods, LQG design, and modal control). Ewins’s book [33] presents methods of modal testing of structures. Natke’s book [111] on structural identification also contains excellent material on structural dynamics. Fuller, Elliot, and Nelson [40] cover problems of structural active control and structural acoustic control.







Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems


Book Description

This monograph evolved over a period of nine years from a series of papers and presentations addressing the subject of passive vibration control of mechanical s- tems subjected to broadband, transient inputs. The unifying theme is Targeted - ergy Transfer – TET, which represents a new and unique approach to the passive control problem, in which a strongly nonlinear, fully passive, local attachment, the Nonlinear Energy Sink – NES, is employed to drastically alter the dynamics of the primary system to which it is attached. The intrinsic capacity of the properly - signed NES to promote rapid localization of externally applied (narrowband) - bration or (broadband) shock energy to itself, where it can be captured and dis- pated, provides a powerful strategy for vibration control and the opens the pos- bility for a wide range of applications of TET, such as, vibration and shock i- lation, passive energy harvesting, aeroelastic instability (?utter) suppression, se- mic mitigation, vortex shedding control, enhanced reliability designs (for ex- ple in power grids) and others. The monograph is intended to provide a thorough explanation of the analytical, computational and experimental methods needed to formulate and study TET in mechanical and structural systems. Several prac- cal engineering applications are examined in detail, and experimental veri?cation and validation of the theoretical predictions are provided as well. The authors also suggest a number of possible future applications where application of TET seems promising. The authors are indebted to a number of sponsoring agencies.




Adaptive and Learning Systems


Book Description

This volume offers a glimpse of the status of research in adaptive and learning systems in 1985. In recent years these areas have spawned a multiplicity of ideas so rapidly that the average research worker or practicing engineer is overwhelmed by the flood of information. The Yale Workshop on Applications of Adaptive Systems Theory was organized in 1979 to provide a brief respite from this deluge, wherein critical issues may be examined in a calm and collegial environment. The fourth of the series having been held in May 1985, it has now become well established as a biennial forum for the lively exchange of ideas in the ever changing domain of adaptive systems. The scope of this book is broad and ranges from theoretical investigations to practical applications. It includes twenty eight papers by leaders in the field, selected from the Pro ceedings of the Fourth Yale Workshop and divided into five sections. I have provided a brief introduction to each section so that it can be read as a self-contained unit. The first section, devoted to adaptive control theory, suggests the intensity of activity in the field and reveals signs of convergence towards some common themes by workers with rather different moti vation. Preliminary results concerning the reduced order model problem are dramatically changing the way we view the field and bringing it closer to other areas such as robust linear control where major advances have been recently reported.




NBS Special Publication


Book Description




Advanced Aerospace Applications, Volume 1


Book Description

Advanced Aerospace Applications, Volume 1. Proceedings of the 29th IMAC, A Conference and Exposition on Structural Dynamics, 2011, the first volume of six from the Conference, brings together 32 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on Aeroelasticity, Ground Testing, Dynamic Testing of Aerospace Structures, and Random Vibration.




Nonlinear Dynamics of Structures, Systems and Devices


Book Description

This first of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to Nonlinear Dynamics of Structures, Systems and Devices. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume I include multi-scale dynamics: coexistence of multiple time/space scales, large system dynamics; dynamics of structures/industrial machines/equipment/facilities (e.g., cable transportation systems, suspension bridges, cranes, vehicles); nonlinear interactions: parametric vibrations with single/multi-frequency excitations, multiple external and autoparametric resonances in multi-dof systems; nonlinear system identification: parametric/nonparametric identification, data-driven identification; experimental dynamics: benchmark experiments, experimental methods, instrumentation techniques, measurements in harsh environments, experimental validation of nonlinear models; wave propagation, solitons, kinks, breathers; solution methods for pdes: Lie groups, Hirota’s method, perturbation methods, etc; nonlinear waves in media (granular materials, porous materials, materials with memory); composite structures: multi-layer, functionally graded, thermal loading; fluid/structure interaction; nonsmooth and retarded dynamics: systems with impacts, free play, stick-slip, friction hysteresis; nonlinear systems with time and/or space delays; stability of delay differential equations, differential-algebraic equations; space/time reduced-order modeling: enhanced discretization methods, center manifold reduction, nonlinear normal modes, normal forms; fractional-order systems; computational techniques: efficient algorithms, use of symbolic manipulators, integration of symbolic manipulation and numerical methods, use of parallel processors; and multibody dynamics: rigid and flexible multibody system dynamics, impact and contact mechanics, tire modeling, railroad vehicle dynamics, computational multibody dynamics.