Entropy Optimization and Mathematical Programming


Book Description

Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization and Mathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader.




Applied and Computational Optimal Control


Book Description

The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.




Canonical Duality Theory


Book Description

This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization. With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in complex systems with real-world applications in non-convex analysis, non-monotone variational inequalities, integer programming, topology optimization, post-buckling of large deformed structures, etc. Researchers and graduate students will find explanation and potential applications in multidisciplinary fields.




Optimization Methods, Theory and Applications


Book Description

This book presents the latest research findings and state-of-the-art solutions on optimization techniques and provides new research direction and developments. Both the theoretical and practical aspects of the book will be much beneficial to experts and students in optimization and operation research community. It selects high quality papers from The International Conference on Optimization: Techniques and Applications (ICOTA2013). The conference is an official conference series of POP (The Pacific Optimization Research Activity Group; there are over 500 active members). These state-of-the-art works in this book authored by recognized experts will make contributions to the development of optimization with its applications.




Optimization and Control with Applications


Book Description

A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.




Contributions in Numerical Mathematics


Book Description

World Scientific Series in Applicable Analysis (WSSIAA) aims at reporting new developments of a high mathematical standard and of current interest. Each volume in the series shall be devoted to mathematical analysis that has been applied, or potentially applicable to the solutions of scientific, engineering and social problems.This second volume of WSSIAA contains 34 research articles on numerical mathematics by leading mathematicians from all over the world. This volume is dedicated to the memory of Lothar Collatz (1910 - 1990) for his significant contributions to numerical mathematics.Contributors: G Adomian, E L Allgower, C T H Baker, B Beckermann, R W Brankin, C Brezinski, L Brugnano, J C Butcher, M D Buhmann, J R Cash, R Chapko, H-L Chen, Min Chen, I Galligani, T J Garratt, K Georg, I Gladwell, D Greenspan, C W Groetsch, E Hairer, P J van der Houwen, A Iserles, L Jay, K Kaji, A Q M Khaliq, M E Kramer, R Kress, Chun Li, D S Lubinsky, R M M Mattheij, C A Micchelli, J J H Miller, T Mitsui, G Monegato, G Moore, M Mori, M T Nakao, S P N?rsett, T Ojika, T Ooura, S Pr”ssdorf, R Rach, Y Saito, M Sakai, T Sakurai, L F Shampine, B P Sommeijer, A Spence, H J Stetter, R Temam, K L Teo, V Thom‚e, D Trigiante, T Torii, E H Twizell, R A Usmani, D A Voss, J Walker, Song Wang, G A Watson, J Wimp, K H Wong, N-Y Zhang.




Advances in Mechanics and Mathematics


Book Description

As any human activity needs goals, mathematical research needs problems -David Hilbert Mechanics is the paradise of mathematical sciences -Leonardo da Vinci Mechanics and mathematics have been complementary partners since Newton's time and the history of science shows much evidence of the ben eficial influence of these disciplines on each other. Driven by increasingly elaborate modern technological applications the symbiotic relationship between mathematics and mechanics is continually growing. However, the increasingly large number of specialist journals has generated a du ality gap between the two partners, and this gap is growing wider. Advances in Mechanics and Mathematics (AMMA) is intended to bridge the gap by providing multi-disciplinary publications which fall into the two following complementary categories: 1. An annual book dedicated to the latest developments in mechanics and mathematics; 2. Monographs, advanced textbooks, handbooks, edited vol umes and selected conference proceedings. The AMMA annual book publishes invited and contributed compre hensive reviews, research and survey articles within the broad area of modern mechanics and applied mathematics. Mechanics is understood here in the most general sense of the word, and is taken to embrace relevant physical and biological phenomena involving electromagnetic, thermal and quantum effects and biomechanics, as well as general dy namical systems. Especially encouraged are articles on mathematical and computational models and methods based on mechanics and their interactions with other fields. All contributions will be reviewed so as to guarantee the highest possible scientific standards.




Optimization, Simulation and Control


Book Description

This volume gathers selected, peer-reviewed works presented at the 7th International Conference on Optimization, Simulation and Control, ICOSC 2022, held at the National University of Mongolia, Ulaanbaatar, June 20–22, 2022. Topics covered include (but are not limited to) mathematical programming; network, global, linear, nonlinear, parametric, stochastic, and multi-objective optimization; control theory; biomathematics; and deep and machine learning, to name a few. Held every three years since 2002, the ICOSC conference has become a traditional gathering for experienced and young researchers in optimization and control to share recent findings in these fields and discuss novel applications in myriad sectors. Researchers and graduate students in the fields of mathematics, engineering, and computer science can greatly benefit from this book, which can also be enjoyed by advanced practitioners in research laboratories and the industry. The 2022 edition of the ICOSC conference was sponsored by the Mongolian Academy of Sciences, the National University of Mongolia and the German-Mongolian Institute for Resources and Technology.




Nonsmooth/Nonconvex Mechanics


Book Description

Nonsmooth and nonconvex models arise in several important applications of mechanics and engineering. The interest in this field is growing from both mathematicians and engineers. The study of numerous industrial applications, including contact phenomena in statics and dynamics or delamination effects in composites, require the consideration of nonsmoothness and nonconvexity. The mathematical topics discussed in this book include variational and hemivariational inequalities, duality, complementarity, variational principles, sensitivity analysis, eigenvalue and resonance problems, and minimax problems. Applications are considered in the following areas among others: nonsmooth statics and dynamics, stability of quasi- static evolution processes, friction problems, adhesive contact and debonding, inverse problems, pseudoelastic modeling of phase transitions, chaotic behavior in nonlinear beams, and nonholonomic mechanical systems. This volume contains 22 chapters written by various leading researchers and presents a cohesive and authoritative overview of recent results and applications in the area of nonsmooth and nonconvex mechanics. Audience: Faculty, graduate students, and researchers in applied mathematics, optimization, control and engineering.




Duality Principles in Nonconvex Systems


Book Description

Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.