Ninth European Solid-State Circuits Conference, ESSCIRC '83, 21-23 September 1983
Author :
Publisher :
Page : 254 pages
File Size : 17,59 MB
Release : 1983
Category : Integrated circuits
ISBN :
Author :
Publisher :
Page : 254 pages
File Size : 17,59 MB
Release : 1983
Category : Integrated circuits
ISBN :
Author : Ranjit Gharpurey
Publisher : Springer Science & Business Media
Page : 207 pages
File Size : 23,14 MB
Release : 2008-03-06
Category : Technology & Engineering
ISBN : 0387692789
This book is a compilation of chapters on various aspects of Ultra Wideband. The book includes chapters on Ultra Wideband transceiver implementations, pulse-based systems and one on the implementation for the WiMedia/MBOFDM approach. Another chapter discusses the implementation of the physical layer baseband, including the ADC and post-ADC processing required in the UWB system. Future advances such as multiantenna UWB solutions are also discussed.
Author : Safa Kasap
Publisher : Springer Science & Business Media
Page : 1409 pages
File Size : 27,66 MB
Release : 2007-08-01
Category : Technology & Engineering
ISBN : 0387291857
Contributions from well known and respected researchers throughout the world Thorough coverage of electronic and opto-electronic materials that today's electrical engineers, material scientists and physicists need Interdisciplinary approach encompasses research in disciplines such as materials science, electrical engineering, chemical engineering, mechanical engineering, physics and chemistry
Author : H. Grünbacher
Publisher : Atlantica Séguier Frontières
Page : 462 pages
File Size : 28,79 MB
Release : 1997
Category : Integrated circuits
ISBN : 9782863322208
Author : Suman Lata Tripathi
Publisher : CRC Press
Page : 414 pages
File Size : 19,2 MB
Release : 2020-08-19
Category : Technology & Engineering
ISBN : 1000168174
This book facilitates the VLSI-interested individuals with not only in-depth knowledge, but also the broad aspects of it by explaining its applications in different fields, including image processing and biomedical. The deep understanding of basic concepts gives you the power to develop a new application aspect, which is very well taken care of in this book by using simple language in explaining the concepts. In the VLSI world, the importance of hardware description languages cannot be ignored, as the designing of such dense and complex circuits is not possible without them. Both Verilog and VHDL languages are used here for designing. The current needs of high-performance integrated circuits (ICs) including low power devices and new emerging materials, which can play a very important role in achieving new functionalities, are the most interesting part of the book. The testing of VLSI circuits becomes more crucial than the designing of the circuits in this nanometer technology era. The role of fault simulation algorithms is very well explained, and its implementation using Verilog is the key aspect of this book. This book is well organized into 20 chapters. Chapter 1 emphasizes on uses of FPGA on various image processing and biomedical applications. Then, the descriptions enlighten the basic understanding of digital design from the perspective of HDL in Chapters 2–5. The performance enhancement with alternate material or geometry for silicon-based FET designs is focused in Chapters 6 and 7. Chapters 8 and 9 describe the study of bimolecular interactions with biosensing FETs. Chapters 10–13 deal with advanced FET structures available in various shapes, materials such as nanowire, HFET, and their comparison in terms of device performance metrics calculation. Chapters 14–18 describe different application-specific VLSI design techniques and challenges for analog and digital circuit designs. Chapter 19 explains the VLSI testability issues with the description of simulation and its categorization into logic and fault simulation for test pattern generation using Verilog HDL. Chapter 20 deals with a secured VLSI design with hardware obfuscation by hiding the IC’s structure and function, which makes it much more difficult to reverse engineer.
Author : Ulrich W. Kulisch
Publisher : Springer Science & Business Media
Page : 151 pages
File Size : 30,82 MB
Release : 2012-09-07
Category : Computers
ISBN : 3709105250
The number one requirement for computer arithmetic has always been speed. It is the main force that drives the technology. With increased speed larger problems can be attempted. To gain speed, advanced processors and pro gramming languages offer, for instance, compound arithmetic operations like matmul and dotproduct. But there is another side to the computational coin - the accuracy and reliability of the computed result. Progress on this side is very important, if not essential. Compound arithmetic operations, for instance, should always deliver a correct result. The user should not be obliged to perform an error analysis every time a compound arithmetic operation, implemented by the hardware manufacturer or in the programming language, is employed. This treatise deals with computer arithmetic in a more general sense than usual. Advanced computer arithmetic extends the accuracy of the elementary floating-point operations, for instance, as defined by the IEEE arithmetic standard, to all operations in the usual product spaces of computation: the complex numbers, the real and complex intervals, and the real and complex vectors and matrices and their interval counterparts. The implementation of advanced computer arithmetic by fast hardware is examined in this book. Arithmetic units for its elementary components are described. It is shown that the requirements for speed and for reliability do not conflict with each other. Advanced computer arithmetic is superior to other arithmetic with respect to accuracy, costs, and speed.
Author : Tobias Funk
Publisher : Springer Nature
Page : 144 pages
File Size : 41,48 MB
Release : 2020-09-04
Category : Technology & Engineering
ISBN : 303053250X
This book provides readers with a single-source reference to current sensing integrated circuit design. It is written in handbook style, including systematic guidelines and implementation examples. The authors focus on the implementation of wide-bandwidth current sensing on a single microchip, toward usage in applications such as sensing, control and optimization of the energy flow in growth areas like industrial electronics, renewable energies, smart grids, electromobility and the Internet of Things. Provides readers with a comprehensive, all-in-one source for current sensing integrated circuit design, including implementation examples; Discusses modeling and optimization of on-chip Rogowski coil and Hall sensor in both lateral and vertical orientation; Includes noise reduction techniques, such as auto-zeroing and chopping; Covers open-loop and closed-loop sensor front-end design; Presents the first on-chip current sensor with a planar coil placed besides a power line to measure internal signal currents and the first off-chip current sensor with a helix-shaped coil for external signal currents in the multi-MHz region.
Author : Institute of Electrical and Electronics Engineers
Publisher :
Page : 722 pages
File Size : 44,13 MB
Release : 1980
Category : Electric engineering
ISBN :
Issues for 1973- cover the entire IEEE technical literature.
Author : Bernd Höfflinger
Publisher : Springer
Page : 342 pages
File Size : 15,66 MB
Release : 2015-09-19
Category : Science
ISBN : 3319220934
The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising Moore-like exponential growth sustainable through to the 2030s.
Author : Hao Yu
Publisher : Springer Science & Business
Page : 200 pages
File Size : 24,46 MB
Release : 2014-04-18
Category : Technology & Engineering
ISBN : 1493905511
This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices. Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices. Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design. • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design and hybrid NVM memory system optimization; • Provides both theoretical analysis and practical examples to illustrate design methodologies; • Illustrates design and analysis for recent developments in spin-toque-transfer, domain-wall racetrack and memristors.