Specialty Optical Fibers Handbook


Book Description

This book is a comprehensive contributed volume that aims to describe and explain the design, fabrication, operating characteristics, and specific applications of the most popular and useful types of specialty optical fibers. These "specialty fibers include any kind of optical fiber that has been architecturally manipulated to diverge from a conventional structure. For instance, metal-coated fibers can be utilized for bandwidth improvement, and hollow core fibers offer more controllable dispersion for sensitive medical procedures. Applications for these specialty fibers abound in the biomedical, sensors, and industrial fields, as well as in more traditional communications capacities. This book will act as a specialty fiber "guided tour, hosted by the top names in the discipline. The globally renowned editors, Drs. Mendez and Morse, have extensive experience in research, academia, and industry.*Completely covers biomedical and industrial sensor technology with emphasis on real world applications *Comparative studies of pros and cons of all fiber types with relation to test and measurement, mechanical properties and strength, and reliability*Easy to access essential facts and details at the begining of each chapter




Specialty Optical Fibers


Book Description

Specialty Optical Fibers reviews theoretical and experimental photonic research relevant to the synthesis, processing, characterization, modeling, physical features, and applications of Specialty Optical Fibers (SOFs) with significant technological impact potential. All fiber-based advanced photonics device components rely on specialty optical fibers, which have either a unique waveguide structure or a novel material composition. High power optical amplifiers, high power fiber, and novel fabrication techniques for optical fiber design have enabled significant technological advances. The book provides discussion on these applications including current research directions, future opportunities and remaining challenges.Specialty Optical Fibers is suitable for researchers in academia and practitioners in R&D working in the subject areas of materials science, electrical engineering, and fiber optics. - Includes an overview of specialty optical fiber materials design and fabrication technologies - Reviews fundamentals of the most relevant optical fiber materials, including their physics, chemistry, and optoelectronics principles - Explores current research directions and future opportunities and challenges of utilization of optical fibers for a wide range of diverse applications




Fiber Optic Reference Guide


Book Description

The Fiber Optic Reference Guide offers readers a solid understanding of the principles of fiber optic technology, especially as it relates to telecommunications, from its early days to developing future trends. Using a minimum of jargon and a wealth of illustrations, this book provides the underlying principles of fiber optics as well as essential practical applications. The third edition is updated to include expanded sections on light emitters, semiconductor optical amplifiers, Bragg gratings, and more systems design considerations. Fiber optics plays a key role in communications, as well as in broadcast and cable systems. Engineers working with fiber optics as well as newcomers to the industry will find the third edition of this reference guide invaluable. It will help the reader develop a solid understanding of the underlying principles of this rapidly changing technology as well as its essential practical applications. The text is thoroughly indexed and illustrated.




Handbook of Optical Sensors


Book Description

Handbook of Optical Sensors provides a comprehensive and integrated view of optical sensors, addressing the fundamentals, structures, technologies, applications, and future perspectives. Featuring chapters authored by recognized experts and major contributors to the field, this essential reference: Explains the basic aspects of optical sensors and the principles of optical metrology, presenting a brief historical review Explores the role of optical waveguides in sensing and discusses sensor technologies based on intensity and phase modulation, fluorescence, and plasmonic waves Describes wavefront sensing, multiphoton microscopy, and imaging based on optical coherence tomography Covers optical fiber sensing, from light guiding in standard and microstructured optical fibers to sensor multiplexing, distributed sensing, and fiber Bragg grating Offers a broad perspective of the field and identifies trends that could shape the future, such as metamaterials and entangled quantum states of light Handbook of Optical Sensors is an ideal resource for practitioners and those seeking optical solutions for their specific needs, as well as for students and investigators who are the intellectual driving force of optical sensing.




Optical Fiber Applications


Book Description

With the invention of the laser it was possible to think about a fast and efficient way to make the information transmission, thus originating the first ideas of transmission through wave guides. This led to the invention of the optical fibers, for which scientific-technological research has been constantly developed in order to improve the efficiency of information transmission for different applications. Then, various techniques and materials used for the manufacture of optical fibers have been developed, which have been improved over the years, obtaining high efficiency in the transmission of information, as well as different types of optical fiber applications. This book intends to provide the reader a review of some different fiber optic applications as well as some ideas about the future of growing in this important technological area.







Polymer Fiber Optics


Book Description

This straightforward text examines the scientific principles, characterization techniques, and fabrication methods used to design and produce high quality optical fibers. Polymer Fiber Optics: Materials, Physics, and Applications focuses on the fundamental concepts that will continue to play a role in future research and applications. This book documents the underlying physics of polymer fibers, particularly aspects of light interaction, and details the practical considerations for a broad range of characterization techniques used to investigate new phenomena. The book presents basic fabrication techniques and protocols that will likely remain useful as new advances address specific processing challenges. The author presents a fresh approach to standard derivations, using numerous figures and diagrams to break down complex concepts and illustrate theoretical calculations. The final chapters draw attention to the latest directions in research and novel applications, including photomechanical actuation, electro-optic fibers, and smart materials.




Springer Handbook of Glass


Book Description

This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part features detailed descriptions of modern characterization techniques for understanding this complex state of matter. The fourth part covers modeling, from first-principles calculations through molecular dynamics simulations, and statistical modeling. The fifth part presents a range of laboratory and industrial glass processing methods. The remaining parts cover a wide and representative range of applications areas from optics and photonics through environment, energy, architecture, and sensing. Written by the leading international experts in the field, the Springer Handbook of Glass represents an invaluable resource for graduate students through academic and industry researchers working in photonics, optoelectronics, materials science, energy, architecture, and more.




Springer Handbook of Lasers and Optics


Book Description

This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.




Selected Topics on Optical Fiber Technologies and Applications


Book Description

This book is a collection of contributions by selected active researchers in the optical fiber fields highlighting the design, fabrication, and application of optical fibers and fiber systems and covering various topics such as microstructured optical fibers, polymer fibers, nonlinear effects, optical tweezers, and gyroscopic systems. The goal of the book is to provide an updated overview of the current research trends in the optical fiber fields, serving as a general reference for the recent development in optical fiber technologies, though inevitably many topics are not covered.