Specification and Verification of Concurrent Systems


Book Description

This volume contains papers presented at the BCS-FACS Workshop on Specification and Verification of Concurrent Systems held on 6-8 July 1988, at the University of Stirling, Scotland. Specification and verification techniques are playing an increasingly important role in the design and production of practical concurrent systems. The wider application of these techniques serves to identify difficult problems that require new approaches to their solution and further developments in specification and verification. The Workshop aimed to capture this interplay by providing a forum for the exchange of the experience of academic and industrial experts in the field. Presentations included: surveys, original research, practical experi ence with methods, tools and environments in the following or related areas: Object-oriented, process, data and logic based models and specifi cation methods for concurrent systems Verification of concurrent systems Tools and environments for the analysis of concurrent systems Applications of specification languages to practical concurrent system design and development. We should like to thank the invited speakers and all the authors of the papers whose work contributed to making the Workshop such a success. We were particularly pleased with the international response to our call for papers. Invited Speakers Pierre America Philips Research Laboratories University of Warwick Professor M. Joseph David Freestone British Telecom Organising Committee Charles Rattray Dr Muffy Thomas Dr Simon Jones Dr John Cooke Professor Ken Turner Derek Coleman Maurice Naftalin Dr Peter Scharbach vi Preface We would like to aeknowledge the finaneial eontribution made by SD-Sysems Designers pie, Camberley, Surrey.




International Symposium on Programming


Book Description




Temporal Logic in Specification


Book Description

Self-concept and coping behaviour are important aspects of development in adolescence. Despite their developmental significance, however, the two areas have rarely been considered in relation to each other. This book is the first in which the two areas are brought together; it suggests that this interaction can open the way to new possibilities for further research and to new implications for applied work with adolescents. Two separate chapters review research carried out in each of the areas. These are followed by a series of more empirically focussed chapters in which issues such as changes in relationship patterns, difficult school situations, leaving school, use of leisure, anxiety and suicidal behaviour are examined in the context of self-concept and coping. The final chapter seeks to identify some of the central themes emerging from this work and discusses possible research and applied implications.







Specification and Verification of Concurrent Systems


Book Description

This volume contains papers presented at the BCS-FACS Workshop on Specification and Verification of Concurrent Systems held on 6-8 July 1988, at the University of Stirling, Scotland. Specification and verification techniques are playing an increasingly important role in the design and production of practical concurrent systems. The wider application of these techniques serves to identify difficult problems that require new approaches to their solution and further developments in specification and verification. The Workshop aimed to capture this interplay by providing a forum for the exchange of the experience of academic and industrial experts in the field. Presentations included: surveys, original research, practical experi ence with methods, tools and environments in the following or related areas: Object-oriented, process, data and logic based models and specifi cation methods for concurrent systems Verification of concurrent systems Tools and environments for the analysis of concurrent systems Applications of specification languages to practical concurrent system design and development. We should like to thank the invited speakers and all the authors of the papers whose work contributed to making the Workshop such a success. We were particularly pleased with the international response to our call for papers. Invited Speakers Pierre America Philips Research Laboratories University of Warwick Professor M. Joseph David Freestone British Telecom Organising Committee Charles Rattray Dr Muffy Thomas Dr Simon Jones Dr John Cooke Professor Ken Turner Derek Coleman Maurice Naftalin Dr Peter Scharbach vi Preface We would like to aeknowledge the finaneial eontribution made by SD-Sysems Designers pie, Camberley, Surrey.




Temporal Verification of Reactive Systems


Book Description

This book is about the verification of reactive systems. A reactive system is a system that maintains an ongoing interaction with its environment, as opposed to computing some final value on termination. The family of reactive systems includes many classes of programs whose correct and reliable construction is con sidered to be particularly challenging, including concurrent programs, embedded and process control programs, and operating systems. Typical examples of such systems are an air traffic control system, programs controlling mechanical devices such as a train, or perpetually ongoing processes such as a nuclear reactor. With the expanding use of computers in safety-critical areas, where failure is potentially disastrous, correctness is crucial. This has led to the introduction of formal verification techniques, which give both users and designers of software and hardware systems greater confidence that the systems they build meet the desired specifications. Framework The approach promoted in this book is based on the use of temporal logic for specifying properties of reactive systems, and develops an extensive verification methodology for proving that a system meets its temporal specification. Reactive programs must be specified in terms of their ongoing behavior, and temporal logic provides an expressive and natural language for specifying this behavior. Our framework for specifying and verifying temporal properties of reactive systems is based on the following four components: 1. A computational model to describe the behavior of reactive systems. The model adopted in this book is that of a Fair Transition System (FTS).




Understanding Concurrent Systems


Book Description

CSP notation has been used extensively for teaching and applying concurrency theory, ever since the publication of the text Communicating Sequential Processes by C.A.R. Hoare in 1985. Both a programming language and a specification language, the theory of CSP helps users to understand concurrent systems, and to decide whether a program meets its specification. As a member of the family of process algebras, the concepts of communication and interaction are presented in an algebraic style. An invaluable reference on the state of the art in CSP, Understanding Concurrent Systems also serves as a comprehensive introduction to the field, in addition to providing material for a number of more advanced courses. A first point of reference for anyone wanting to use CSP or learn about its theory, the book also introduces other views of concurrency, using CSP to model and explain these. The text is fully integrated with CSP-based tools such as FDR, and describes how to create new tools based on FDR. Most of the book relies on no theoretical background other than a basic knowledge of sets and sequences. Sophisticated mathematical arguments are avoided whenever possible. Topics and features: presents a comprehensive introduction to CSP; discusses the latest advances in CSP, covering topics of operational semantics, denotational models, finite observation models and infinite-behaviour models, and algebraic semantics; explores the practical application of CSP, including timed modelling, discrete modelling, parameterised verifications and the state explosion problem, and advanced topics in the use of FDR; examines the ability of CSP to describe and enable reasoning about parallel systems modelled in other paradigms; covers a broad variety of concurrent systems, including combinatorial, timed, priority-based, mobile, shared variable, statecharts, buffered and asynchronous systems; contains exercises and case studies to support the text; supplies further tools and information at the associated website: http://www.comlab.ox.ac.uk/ucs/. From undergraduate students of computer science in need of an introduction to the area, to researchers and practitioners desiring a more in-depth understanding of theory and practice of concurrent systems, this broad-ranging text/reference is essential reading for anyone interested in Hoare’s CSP.




Coloured Petri Nets


Book Description

Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism and the immense number of possible execution sequences. In this textbook Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case studies that illustrate the practical use of CPN modelling and validation for design, specification, simulation, verification and implementation in various application domains. Their presentation primarily aims at readers interested in the practical use of CPN. Thus all concepts and constructs are first informally introduced through examples and then followed by formal definitions (which may be skipped). The book is ideally suitable for a one-semester course at an advanced undergraduate or graduate level, and through its strong application examples can also serve for self-study. An accompanying website offers additional material such as slides, exercises and project proposals. Book website: http://www.cs.au.dk/CPnets/cpnbook/




Concurrency


Book Description

This book is a celebration of Leslie Lamport's work on concurrency, interwoven in four-and-a-half decades of an evolving industry: from the introduction of the first personal computer to an era when parallel and distributed multiprocessors are abundant. His works lay formal foundations for concurrent computations executed by interconnected computers. Some of the algorithms have become standard engineering practice for fault tolerant distributed computing – distributed systems that continue to function correctly despite failures of individual components. He also developed a substantial body of work on the formal specification and verification of concurrent systems, and has contributed to the development of automated tools applying these methods. Part I consists of technical chapters of the book and a biography. The technical chapters of this book present a retrospective on Lamport's original ideas from experts in the field. Through this lens, it portrays their long-lasting impact. The chapters cover timeless notions Lamport introduced: the Bakery algorithm, atomic shared registers and sequential consistency; causality and logical time; Byzantine Agreement; state machine replication and Paxos; temporal logic of actions (TLA). The professional biography tells of Lamport's career, providing the context in which his work arose and broke new grounds, and discusses LaTeX – perhaps Lamport’s most influential contribution outside the field of concurrency. This chapter gives a voice to the people behind the achievements, notably Lamport himself, and additionally the colleagues around him, who inspired, collaborated, and helped him drive worldwide impact. Part II consists of a selection of Leslie Lamport's most influential papers. This book touches on a lifetime of contributions by Leslie Lamport to the field of concurrency and on the extensive influence he had on people working in the field. It will be of value to historians of science, and to researchers and students who work in the area of concurrency and who are interested to read about the work of one of the most influential researchers in this field.




Systems and Software Verification


Book Description

Model checking is a powerful approach for the formal verification of software. It automatically provides complete proofs of correctness, or explains, via counter-examples, why a system is not correct. Here, the author provides a well written and basic introduction to the new technique. The first part describes in simple terms the theoretical basis of model checking: transition systems as a formal model of systems, temporal logic as a formal language for behavioral properties, and model-checking algorithms. The second part explains how to write rich and structured temporal logic specifications in practice, while the third part surveys some of the major model checkers available.