Sample Preparation Handbook for Transmission Electron Microscopy


Book Description

Successful transmission electron microscopy in all of its manifestations depends on the quality of the specimens examined. Biological specimen preparation protocols have usually been more rigorous and time consuming than those in the physical sciences. For this reason, there has been a wealth of scienti c literature detailing speci c preparation steps and numerous excellent books on the preparation of b- logical thin specimens. This does not mean to imply that physical science specimen preparation is trivial. For the most part, most physical science thin specimen pre- ration protocols can be executed in a matter of a few hours using straightforward steps. Over the years, there has been a steady stream of papers written on various aspects of preparing thin specimens from bulk materials. However, aside from s- eral seminal textbooks and a series of book compilations produced by the Material Research Society in the 1990s, no recent comprehensive books on thin specimen preparation have appeared until this present work, rst in French and now in English. Everyone knows that the data needed to solve a problem quickly are more imp- tant than ever. A modern TEM laboratory with supporting SEMs, light microscopes, analytical spectrometers, computers, and specimen preparation equipment is an investment of several million US dollars. Fifty years ago, electropolishing, chemical polishing, and replication methods were the principal specimen preparation me- ods.




Introduction to Conventional Transmission Electron Microscopy


Book Description

A graduate level textbook covering the fundamentals of conventional transmission electron microscopy, first published in 2003.




Progress in Transmission Electron Microscopy 1


Book Description

Transmission electron microscopy (TEM) is now recognized as a crucial tool in materials science. This book, authored by a team of expert Chinese and international authors, covers many aspects of modern electron microscopy, from the architecture of novel electron microscopes, advanced theories and techniques in TEM and sample preparation, to a variety of hands-on examples of TEM applications. Volume I concentrates on the newly developed concepts and methods which are making TEM a powerful and indispensible tool in materials science.




Handbook of Nanoscopy, 2 Volume Set


Book Description

This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.




Technical Abstract Bulletin


Book Description







International Tables for Crystallography, Mathematical, Physical and Chemical Tables


Book Description

International Tables for Crystallography is the definitive resource and reference work for crystallography and structural science. Each of the volumes in the series contains articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials. Emphasis is given to symmetry, diffraction methods and techniques of crystal-structure determination, and the physical and chemical properties of crystals. The data are accompanied by discussions of theory, practical explanations and examples, all of which are useful for teaching. Volume C provides the mathematical, physical and chemical information needed for experimental studies in structural crystallography. This volume covers all aspects of experimental techniques, using all three principal radiation types (X-ray, electron and neutron), from the selection and mounting of crystals and production of radiation, through data collection and analysis, to interpretation of results. Each chapter is supported by a substantial collection of references, and the volume ends with a section on precautions against radiation injury. Eleven chapters have been revised, corrected or updated for the third edition of Volume C. More information on the series can be found at: http://it.iucr.org