Spectral Methods in Infinite-Dimensional Analysis


Book Description

The Russian edition of this book appeared 5 years ago. Since that time, many results have been improved upon and new approaches to the problems investigated in the book have appeared. But the greatest surprise for us was to discover that there exists a large group of mathematicians working in the area of the so-called White Noise Analysis which is closely connected with the essential part of our book, namely, with the theory of generalized functions of infinitely many variables. The first papers dealing with White Noise Analysis were written by T. Hida in Japan in 1975. Later, this analysis was devel oped intensively in Japan, Germany, U.S.A., Taipei, and in other places. The related problems of infinite-dimensional analysis have been studied in Kiev since 1967, and the theory of generalized functions of infinitely many variables has been in vestigated since 1973. However, due to the political system in the U.S.S.R., contact be tween Ukrainian and foreign mathematicians was impossible for a long period of time. This is why, to our great regret, only at the end of 1988 did one of the authors meet L. Streit who told him about the existence of White Noise Analysis. And it become clear that many results in these two theories coincide and that, in fact, there exists a single theory and not two distinct ones.




Numerical Analysis of Spectral Methods


Book Description

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.







Spectral Methods in MATLAB


Book Description

Mathematics of Computing -- Numerical Analysis.




Spectral Methods


Book Description

Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.




Recent Developments in Infinite-Dimensional Analysis and Quantum Probability


Book Description

Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.




Analysis On Infinite-dimensional Lie Groups And Algebras - Proceedings Of The International Colloquium


Book Description

This proceedings volume can be considered as a monograph on the state-of-the-art in the wide range of analysis on infinite-dimensional algebraic-topological structures. Topics covered in this volume include integrability and regularity for Lie groups and Lie algebras, actions of infinite-dimensional Lie groups on manifolds of paths and related minimal orbits, quasi-invariant measures, white noise analysis, harmonic analysis on generalized convolution structures, and noncommutative geometry. A special feature of this volume is the interrelationship between problems of pure and applied mathematics and also between mathematics and physics.




The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators


Book Description

This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadratic forms, and the theory of rigged Hilbert spaces. The book will appeal to researchers in mathematics and mathematical physics studying the scales of densely embedded Hilbert spaces, the singular perturbations phenomenon, and singular interaction problems.