Spectroscopic Studies of Photosynthetic Systems and Their Application in Photovoltaic Devices - Equipment Only


Book Description

Spectral hole-burning (SHB) and single photosynthetic complex spectroscopy (SPCS) will be used to study the excitonic structure and excitation energy transfer (EET) processes of several photosynthetic protein complexes at low temperatures. The combination of SHB on bulk samples and SPCS is a powerful frequency domain approach for obtaining data that will address a number of issues that are key to understanding excitonic structure and energy transfer dynamics. The long-term goal is to reach a better understanding of the ultrafast solar energy driven primary events of photosynthesis as they occur in higher plants, cyanobacteria, purple bacteria, and green algae. A better understanding of the EET and charge separation (CS) processes taking place in photosynthetic complexes is of great interest, since photosynthetic complexes might offer attractive architectures for a future generation of circuitry in which proteins are crystallized.




High-field EPR Spectroscopy on Proteins and Their Model Systems


Book Description

High-Field EPR Spectroscopy on Proteins and their Model Systems: characterization of Transient Paramagnetic States offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry.




Light Harvesting in Photosynthesis


Book Description

This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.




Spectroscopy of Biological Molecules: New Directions


Book Description

Investigation of the structure and function of biological molecules through spectroscopic methods is a field rich in revealing, clever techniques and demanding experiments. It is most gratifying to see that the basic concepts are applied to more and more complex systems, making feasible the study of the behaviour of whole systems in relation to molecular disturbances. The analytical potential of spectroscopy and spectroscopic imaging enables species identification of bacteria and tissue recognition. Clear opportunities for in vivo applications become apparent in the medical field. The methods developed in biophysics start to generate spin-off in the direction of biotechnology, where in previous years we have seen this happen for biochemical techniques. New directions are manifest. Tools are being developed to investigate the behaviour of single molecules in interaction with their environment. Individual interactions can now be investigated and individual molecules in complexes can be visualized. Processes that were previously unobservable as a result of ensemble averaging can now be investigated on a single molecule level. Completely new information with regard to molecular behaviour is obtained in this way. The insights amaze us and the prospect that this development will continue is exciting. The 8th European Conference on the Spectroscopy of Biological Molecules is proud to have contributed to the dissemination of these new directions. This proceedings book is an appropriate reflection of the progress obtained so far in the spectroscopy of biological molecules.




CMOSET 2012: Abstracts


Book Description




Natural and Artificial Photosynthesis


Book Description

This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.




Organic Optoelectronic Materials


Book Description

This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.







Solar to Chemical Energy Conversion


Book Description

This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.




The Evolution of the Bioenergetic Processes


Book Description

The Evolution of the Bioenergetic Processes deals with the evolution of the bioenergetic processes, from fermentation to photosynthesis and respiration, and their interrelationships in prokaryotes and eukaryotes. Topics covered range from the origin of life to the evolution of eobionts, organisms, and energy-rich compounds. Fermentation, photoorganotrophy, and photosynthesis in bacteria and plants are also discussed. Comprised of 25 chapters, this book begins with an overview of energy and entropy in the biosphere, followed by a detailed treatment of the evolution of bioenergetics based on the pattern of the bioenergetic processes in extant organisms. The reader is then introduced to the events involved in the origin of life; the evolution of eobionts and organisms; and the origin of energy-rich compounds, particularly nucleotides of the adenylic acid system. Subsequent chapters focus on fermentation and photosynthesis; assimilation of carbon dioxide; photoorganotrophy, chemolithotrophy, and photolithotrophy; and aerobic and anaerobic respiration of prokaryotes. The book also considers the energy supply of protozoa and fungi before concluding with an analysis of the history of atmospheric oxygen. This monograph will be of interest to evolutionary biologists.