Spectroscopy and Computation of Hydrogen-Bonded Systems


Book Description

Spectroscopy and Computation of Hydrogen-Bonded Systems Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.




Spectroscopy and Computation of Hydrogen-BondedSystems


Book Description

Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.













Hydrogen-bonding Research In Photochemistry, Photobiology, And Optoelectronic Materials


Book Description

As one of the typical intermolecular interactions, hydrogen-bonding plays a significant role in molecular structure and function. When the hydrogen bond research system is connected with the photon, the hydrogen-bonding effect turns to an excited-state one influencing photochemistry, photobiology, and photophysics. Thus, the hydrogen bond in an excited state is a key topic for understanding the excited-state properties, especially for optoelectronic or luminescent materials.The approaches presented in this book include quantum chemical calculation, molecular dynamics simulation and ultrafast spectroscopy, which are strong tools to investigate the hydrogen bond. Unlike other existing titles, this book combines theoretical calculations and experiments to explore the nature of excited-state hydrogen bonds. By using these methods, more details and faster processes involved in excited-state dynamics of hydrogen bond are explored.This highly interdisciplinary book provides an overview of leading hydrogen bond research. It is essential reading for faculties and students in researching photochemistry, photobiology and photophysics, as well as novel optoelectronic materials, fluorescence probes and photocatalysts. It will also guide research beginners to getting a quick start within this field.







Theoretical Treatments of Hydrogen Bonding


Book Description

Hydrogen bonding is crucial in many chemical and biochemical reactions, as well as in determining material properties. A good insight into the theoretical methods of treating hydrogen bonding is essential for those wishing to model its effects computationally in a wide range of fields involving hydrogen bonding, as well as those wishing to extract the maximal amount of information from experimental data. Theoretical Treatments of Hydrogen Bonding presents the reader with the state of the art of the key theoretical approaches to hydrogen bonding and considers the hydrogen bond from the various aspects. The first five chapters are devoted to the methods used for treating the electronic basis of hydrogen bonding, including a consideration of the electrostatic model, density functional theory and molecular orbital methods. Later chapters consider the dynamics of hydrogen bonds with particular attention to the treatment of proton transfer; manifestations of dynamics as reflected in infrared spectra and nuclear magnetic relaxation are also considered. Hydrogen bonding in liquids and solids such as ferroelectrics are included. The book concludes with an epilogue which discusses the likely development of hydrogen bond computations in very large chemical systems. Theoretical Treatments of Hydrogen Bonding offers the reader a comprehensive view of the current theoretical approaches to hydrogen bonding. It is a valuable presentation of theoretical tools useful to those looking for the most appropriate approach for treating a particular problem involving hydrogen bonding.




Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase


Book Description

Hydrogen bonds represent type of molecular interaction that determines the structure and function of a large variety of molecular systems. The elementary dynamics of hydrogen bonds and related proton transfer reactions, both occurring in the ultra fast time domain between 10-14 and 10-11s, form a research topic of high current interest. In this book addressing scientists and graduate students in physics, chemistry and biology, the ultra fast dynamics of hydrogen bonds and proton transfer in the condensed phase are reviewed by leading scientists, documenting the state of the art in this exciting field from the viewpoint of theory and experiment. The nonequilibrium behavior of hydrogen-bonded liquids and intramolecular hydrogen bonds as well as photo induced hydrogen and proton transfer are covered in 7 chapters, making reference to the most recent literature.




Understanding Hydrogen Bonds


Book Description

Hydrogen bonded systems play an important role in all aspects of science but particularly chemistry and biology. Notably, the helical structure of DNA is heavily reliant on the hydrogens bonds between the DNA base pairs. Although the area of hydrogen bonding is one that is well established, our understanding has continued to develop as the power of both computational and experimental techniques has improved. Understanding Hydrogen Bonds presents an up-to-date overview of our theoretical and experimental understanding of the hydrogen bond. Well-established and novel approaches are discussed, including quantum theory of ‘atoms in molecules’ (QTAIM); the electron localization function (ELF) method and Car–Parinnello molecular dynamics; the natural bond orbital (NBO) approach; and X-ray and neutron diffraction and spectroscopy. The mechanism of hydrogen bond formation is described and comparisons are made between hydrogen bonds and other types of interaction. The author also takes a look at new types of interaction that may be classified as hydrogen bonds with a focus on those with multicentre proton acceptors or with multicentre proton donors. Understanding Hydrogen Bonds is a valuable reference for experimentalists and theoreticians interested in updating their understanding of the types of hydrogen bonds, their role in chemistry and biology, and how they can be studied.