Fundamentals of Spectrum Analysis
Author : Christoph Rauscher
Publisher :
Page : 219 pages
File Size : 34,59 MB
Release : 2007
Category : Spectrum analyzers
ISBN : 9783939837015
Author : Christoph Rauscher
Publisher :
Page : 219 pages
File Size : 34,59 MB
Release : 2007
Category : Spectrum analyzers
ISBN : 9783939837015
Author : Henry Enfield Roscoe
Publisher :
Page : 558 pages
File Size : 46,44 MB
Release : 1873
Category : Heat
ISBN :
Author : Yanwei Wang
Publisher : Morgan & Claypool Publishers
Page : 108 pages
File Size : 20,62 MB
Release : 2005
Category : Computers
ISBN : 1598290002
Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.
Author : Nina Golyandina
Publisher : Springer Nature
Page : 156 pages
File Size : 40,84 MB
Release : 2020-11-23
Category : Mathematics
ISBN : 3662624362
This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.
Author : G. Larry Bretthorst
Publisher : Springer Science & Business Media
Page : 210 pages
File Size : 32,67 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 146849399X
This work is essentially an extensive revision of my Ph.D. dissertation, [1J. It 1S primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material. Any person with the equivalent of the mathematics background required for the graduate level study of physics should be able to follow the material contained in this book, though not without eIfort. From the time the dissertation was written until now (approximately one year) our understanding of the parameter estimation problem has changed extensively. We have tried to incorporate what we have learned into this book. I am indebted to a number of people who have aided me in preparing this docu ment: Dr. C. Ray Smith, Steve Finney, Juana Sunchez, Matthew Self, and Dr. Pat Gibbons who acted as readers and editors. In addition, I must extend my deepest thanks to Dr. Joseph Ackerman for his support during the time this manuscript was being prepared.
Author : Henry Enfield Roscoe
Publisher :
Page : 452 pages
File Size : 34,73 MB
Release : 1870
Category : Spectrum
ISBN :
Author : J.B. Elsner
Publisher : Springer Science & Business Media
Page : 167 pages
File Size : 13,73 MB
Release : 2013-03-09
Category : Business & Economics
ISBN : 1475725140
The term singular spectrum comes from the spectral (eigenvalue) decomposition of a matrix A into its set (spectrum) of eigenvalues. These eigenvalues, A, are the numbers that make the matrix A -AI singular. The term singular spectrum analysis· is unfortunate since the traditional eigenvalue decomposition involving multivariate data is also an analysis of the singular spectrum. More properly, singular spectrum analysis (SSA) should be called the analysis of time series using the singular spectrum. Spectral decomposition of matrices is fundamental to much the ory of linear algebra and it has many applications to problems in the natural and related sciences. Its widespread use as a tool for time series analysis is fairly recent, however, emerging to a large extent from applications of dynamical systems theory (sometimes called chaos theory). SSA was introduced into chaos theory by Fraedrich (1986) and Broomhead and King (l986a). Prior to this, SSA was used in biological oceanography by Colebrook (1978). In the digi tal signal processing community, the approach is also known as the Karhunen-Loeve (K-L) expansion (Pike et aI., 1984). Like other techniques based on spectral decomposition, SSA is attractive in that it holds a promise for a reduction in the dimen- • Singular spectrum analysis is sometimes called singular systems analysis or singular spectrum approach. vii viii Preface sionality. This reduction in dimensionality is often accompanied by a simpler explanation of the underlying physics.
Author : L. H. Koopmans
Publisher : Academic Press
Page : 383 pages
File Size : 26,90 MB
Release : 2014-05-12
Category : Mathematics
ISBN : 1483218546
The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.
Author : Steve Goldman
Publisher : Industrial Press Inc.
Page : 354 pages
File Size : 45,29 MB
Release : 1999
Category : Science
ISBN : 9780831130886
"Written for vibration analysts, predictive maintenance specialists, field mechanics, and a wide variety of engineers, Vibration Spectrum Analysis assumes no prior knowledge of advanced mathematics or mechanical engineering. It carefully guides the reader through sophisticated analysis techniques in a logical, easy-to-understand manner."--BOOK JACKET.
Author : Petre Stoica
Publisher : Pearson Education
Page : 358 pages
File Size : 18,84 MB
Release : 1997
Category : Mathematics
ISBN :
This book presents an introduction to spectral analysis that is designed for either course use or self-study. Clear and concise in approach, it develops a firm understanding of tools and techniques as well as a solid background for performing research. Topics covered include nonparametric spectrum analysis (both periodogram-based approaches and filter- bank approaches), parametric spectral analysis using rational spectral models (AR, MA, and ARMA models), parametric method for line spectra, and spatial (array) signal processing. Analytical and Matlab-based computer exercises are included to develop both analytical skills and hands-on experience.