Applied Speech and Audio Processing


Book Description

This hands-on, one-stop resource describes the key techniques of speech and audio processing illustrated with extensive MATLAB examples.




Speech and Audio Signal Processing


Book Description

When Speech and Audio Signal Processing published in 1999, it stood out from its competition in its breadth of coverage and its accessible, intutiont-based style. This book was aimed at individual students and engineers excited about the broad span of audio processing and curious to understand the available techniques. Since then, with the advent of the iPod in 2001, the field of digital audio and music has exploded, leading to a much greater interest in the technical aspects of audio processing. This Second Edition will update and revise the original book to augment it with new material describing both the enabling technologies of digital music distribution (most significantly the MP3) and a range of exciting new research areas in automatic music content processing (such as automatic transcription, music similarity, etc.) that have emerged in the past five years, driven by the digital music revolution. New chapter topics include: Psychoacoustic Audio Coding, describing MP3 and related audio coding schemes based on psychoacoustic masking of quantization noise Music Transcription, including automatically deriving notes, beats, and chords from music signals. Music Information Retrieval, primarily focusing on audio-based genre classification, artist/style identification, and similarity estimation. Audio Source Separation, including multi-microphone beamforming, blind source separation, and the perception-inspired techniques usually referred to as Computational Auditory Scene Analysis (CASA).




Audio Processing and Speech Recognition


Book Description

This book offers an overview of audio processing, including the latest advances in the methodologies used in audio processing and speech recognition. First, it discusses the importance of audio indexing and classical information retrieval problem and presents two major indexing techniques, namely Large Vocabulary Continuous Speech Recognition (LVCSR) and Phonetic Search. It then offers brief insights into the human speech production system and its modeling, which are required to produce artificial speech. It also discusses various components of an automatic speech recognition (ASR) system. Describing the chronological developments in ASR systems, and briefly examining the statistical models used in ASR as well as the related mathematical deductions, the book summarizes a number of state-of-the-art classification techniques and their application in audio/speech classification. By providing insights into various aspects of audio/speech processing and speech recognition, this book appeals a wide audience, from researchers and postgraduate students to those new to the field.




Audio and Speech Processing with MATLAB


Book Description

Speech and audio processing has undergone a revolution in preceding decades that has accelerated in the last few years generating game-changing technologies such as truly successful speech recognition systems; a goal that had remained out of reach until very recently. This book gives the reader a comprehensive overview of such contemporary speech and audio processing techniques with an emphasis on practical implementations and illustrations using MATLAB code. Core concepts are firstly covered giving an introduction to the physics of audio and vibration together with their representations using complex numbers, Z transforms and frequency analysis transforms such as the FFT. Later chapters give a description of the human auditory system and the fundamentals of psychoacoustics. Insights, results, and analyses given in these chapters are subsequently used as the basis of understanding of the middle section of the book covering: wideband audio compression (MP3 audio etc.), speech recognition and speech coding. The final chapter covers musical synthesis and applications describing methods such as (and giving MATLAB examples of) AM, FM and ring modulation techniques. This chapter gives a final example of the use of time-frequency modification to implement a so-called phase vocoder for time stretching (in MATLAB). Features A comprehensive overview of contemporary speech and audio processing techniques from perceptual and physical acoustic models to a thorough background in relevant digital signal processing techniques together with an exploration of speech and audio applications. A carefully paced progression of complexity of the described methods; building, in many cases, from first principles. Speech and wideband audio coding together with a description of associated standardised codecs (e.g. MP3, AAC and GSM). Speech recognition: Feature extraction (e.g. MFCC features), Hidden Markov Models (HMMs) and deep learning techniques such as Long Short-Time Memory (LSTM) methods. Book and computer-based problems at the end of each chapter. Contains numerous real-world examples backed up by many MATLAB functions and code.




Speech and Audio Processing


Book Description

An accessible introduction to speech and audio processing with numerous practical illustrations, exercises, and hands-on MATLAB® examples.




Video, Speech, and Audio Signal Processing and Associated Standards


Book Description

Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Video, Speech, and Audio Signal Processing and Associated Standards, provides thorough coverage of the basic foundations of speech, audio, image, and video processing and associated applications to broadcast, storage, search and retrieval, and communications.




Introduction to Audio Processing


Book Description

This textbook presents an introduction to signal processing for audio applications. The author’s approach posits that math is at the heart of audio processing and that it should not be simplified. He thus retains math as the core of signal processing and includes concepts of difference equations, convolution, and the Fourier Transform. Each of these is presented in a context where they make sense to the student and can readily be applied to build artifacts. Each chapter in the book builds on the previous ones, building a linear, coherent story. The book starts with a definition of sound and goes on to discuss digital audio signals, filters, The Fourier Transform, audio effects, spatial effects, audio equalizers, dynamic range control, and pitch estimation. The exercises in each chapter cover the application of the concepts to audio signals. The exercises are made specifically for Pure Data (Pd) although traditional software, such as MATLAB, can be used. The book is intended for students in media technology bachelor programs. The book is based on material the author developed teaching on the topic over a number of years.




Digital Audio Signal Processing


Book Description

Digital Audio Signal Processing The fully revised new edition of the popular textbook, featuring additional MATLAB exercises and new algorithms for processing digital audio signals Digital Audio Signal Processing (DASP) techniques are used in a variety of applications, ranging from audio streaming and computer-generated music to real-time signal processing and virtual sound processing. Digital Audio Signal Processing provides clear and accessible coverage of the fundamental principles and practical applications of digital audio processing and coding. Throughout the book, the authors explain a wide range of basic audio processing techniques and highlight new directions for automatic tuning of different algorithms and discuss state- of-the-art DASP approaches. Now in its third edition, this popular guide is fully updated with the latest signal processing algorithms for audio processing. Entirely new chapters cover nonlinear processing, Machine Learning (ML) for audio applications, distortion, soft/hard clipping, overdrive, equalizers and delay effects, sampling and reconstruction, and more. Covers the fundamentals of quantization, filters, dynamic range control, room simulation, sampling rate conversion, and audio coding Describes DASP techniques, their theoretical foundations, and their practical applications Discusses modern studio technology, digital transmission systems, storage media, and home entertainment audio components Features a new introductory chapter and extensively revised content throughout Provides updated application examples and computer-based activities supported with MATLAB exercises and interactive JavaScript applets via an author-hosted companion website Balancing essential concepts and technological topics, Digital Audio Signal Processing, Third Edition remains the ideal textbook for advanced music technology and engineering students in audio signal processing courses. It is also an invaluable reference for audio engineers, hardware and software developers, and researchers in both academia and industry.




Sound Capture and Processing


Book Description

Provides state-of-the-art algorithms for sound capture, processing and enhancement Sound Capture and Processing: Practical Approaches covers the digital signal processing algorithms and devices for capturing sounds, mostly human speech. It explores the devices and technologies used to capture, enhance and process sound for the needs of communication and speech recognition in modern computers and communication devices. This book gives a comprehensive introduction to basic acoustics and microphones, with coverage of algorithms for noise reduction, acoustic echo cancellation, dereverberation and microphone arrays; charting the progress of such technologies from their evolution to present day standard. Sound Capture and Processing: Practical Approaches Brings together the state-of-the-art algorithms for sound capture, processing and enhancement in one easily accessible volume Provides invaluable implementation techniques required to process algorithms for real life applications and devices Covers a number of advanced sound processing techniques, such as multichannel acoustic echo cancellation, dereverberation and source separation Generously illustrated with figures and charts to demonstrate how sound capture and audio processing systems work An accompanying website containing Matlab code to illustrate the algorithms This invaluable guide will provide audio, R&D and software engineers in the industry of building systems or computer peripherals for speech enhancement with a comprehensive overview of the technologies, devices and algorithms required for modern computers and communication devices. Graduate students studying electrical engineering and computer science, and researchers in multimedia, cell-phones, interactive systems and acousticians will also benefit from this book.




Multilingual Speech Processing


Book Description

Tanja Schultz and Katrin Kirchhoff have compiled a comprehensive overview of speech processing from a multilingual perspective. By taking this all-inclusive approach to speech processing, the editors have included theories, algorithms, and techniques that are required to support spoken input and output in a large variety of languages. Multilingual Speech Processing presents a comprehensive introduction to research problems and solutions, both from a theoretical as well as a practical perspective, and highlights technology that incorporates the increasing necessity for multilingual applications in our global community. Current challenges of speech processing and the feasibility of sharing data and system components across different languages guide contributors in their discussions of trends, prognoses and open research issues. This includes automatic speech recognition and speech synthesis, but also speech-to-speech translation, dialog systems, automatic language identification, and handling non-native speech. The book is complemented by an overview of multilingual resources, important research trends, and actual speech processing systems that are being deployed in multilingual human-human and human-machine interfaces. Researchers and developers in industry and academia with different backgrounds but a common interest in multilingual speech processing will find an excellent overview of research problems and solutions detailed from theoretical and practical perspectives. - State-of-the-art research with a global perspective by authors from the USA, Asia, Europe, and South Africa - The only comprehensive introduction to multilingual speech processing currently available - Detailed presentation of technological advances integral to security, financial, cellular and commercial applications