Spherical Harmonics In P Dimensions


Book Description

The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter.




Geometric Applications of Fourier Series and Spherical Harmonics


Book Description

This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.




Harmonic Function Theory


Book Description

This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.




Geomathematics


Book Description

Geomathematics provides a comprehensive summary of the mathematical principles behind key topics in geophysics and geodesy, covering the foundations of gravimetry, geomagnetics and seismology. Theorems and their proofs explain why physical realities in geoscience are the logical mathematical consequences of basic laws. The book also derives and analyzes the theory and numerical aspects of established systems of basis functions; and presents an algorithm for combining different types of trial functions. Topics cover inverse problems and their regularization, the Laplace/Poisson equation, boundary-value problems, foundations of potential theory, the Poisson integral formula, spherical harmonics, Legendre polynomials and functions, radial basis functions, the Biot-Savart law, decomposition theorems (orthogonal, Helmholtz, and Mie), basics of continuum mechanics, conservation laws, modelling of seismic waves, the Cauchy-Navier equation, seismic rays, and travel-time tomography. Each chapter ends with review questions, with solutions for instructors available online, providing a valuable reference for graduate students and researchers.




The Functions of Mathematical Physics


Book Description

A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.




Introduction to Radon Transforms


Book Description

A comprehensive introduction to basic operators of integral geometry and the relevant harmonic analysis for students and researchers.




CRC Concise Encyclopedia of Mathematics


Book Description

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d




AECU


Book Description







Transforms and Applications Handbook


Book Description

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.