Spherical Models


Book Description

Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. 1979 edition.




Polyhedron Models


Book Description

he author describes simply and carefully how to make models of all the known uniform polyhedra and some of the stellated forms.




Electric Brain Signals


Book Description

It is common to study the electric activity of neurons by measuring the electric potential in the extracellular space of the brain. However, interpreting such measurements requires knowledge of the biophysics underlying the electric signals. Written by leading experts in the field, this volume presents the biophysical foundations of the signals as well as results from long-term research into biophysics-based forward-modeling of extracellular brain signals. This includes applications using the open-source simulation tool LFPy, developed and provided by the authors. Starting with the physical theory of electricity in the brain, this book explains how this theory is used to simulate neuronal activity and the resulting extracellular potentials. Example applications of the theory to model representations of real neural systems are included throughout, making this an invaluable resource for students and scientists who wish to understand the brain through analysis of electric brain signals, using biophysics-based modeling.




Reading for Evidence and Interpreting Visualizations in Mathematics and Science Education


Book Description

CRYSTAL—Alberta was established to research ways to improve students’ understanding and reasoning in science and mathematics. To accomplish this goal, faculty members in Education, Science, and Engineering, as well as school teachers joined forces to produce a resource bank of innovative and tested instructional materials that are transforming teaching in the K-12 classroom. Many of the instructional materials cross traditional disciplinary boundaries and explore contemporary topics such as global climate change and the spread of the West Nile virus. Combined with an emphasis on the use of visualizations, the instructional materials improve students’ engagement with science and mathematics. Participation in the CRYSTAL—Alberta project has changed the way I think about the connection between what I do as a researcher and what I do as a teacher: I have learned how to better translate scientific knowledge into language and activities appropriate for students, thereby transforming my own teaching. I also have learned to make better connections between what students are learning and what is happening in their lives and the world, thereby increasing students’ interest in the subject and enriching their learning experience.




Brain Source Localization Using EEG Signal Analysis


Book Description

Of the research areas devoted to biomedical sciences, the study of the brain remains a field that continually attracts interest due to the vast range of people afflicted with debilitating brain disorders and those interested in ameliorating its effects. To discover the roots of maladies and grasp the dynamics of brain functions, researchers and practitioners often turn to a process known as brain source localization, which assists in determining the source of electromagnetic signals from the brain. Aiming to promote both treatments and understanding of brain ailments, ranging from epilepsy and depression to schizophrenia and Parkinson’s disease, the authors of this book provide a comprehensive account of current developments in the use of neuroimaging techniques for brain analysis. Their book addresses a wide array of topics, including EEG forward and inverse problems, the application of classical MNE, LORETA, Bayesian based MSP, and its modified version, M-MSP. Within the ten chapters that comprise this book, clinicians, researchers, and field experts concerned with the state of brain source localization will find a store of information that can assist them in the quest to enhance the quality of life for people living with brain disorders.




Spatial Modeling Principles in Earth Sciences


Book Description

This is a revised and updated second edition, including new chapters on temporal and point uncertainty model, as well as on sampling and deterministic modeling. It is a comprehensive presentation of spatial modeling techniques used in the earth sciences, outlining original techniques developed by the author. Data collection in the earth sciences is difficult and expensive, but simple, rational and logical approaches help the reader to appreciate the fundamentals of advanced methodologies. It requires special care to gather accurate geological, hydrogeological, meteorological and hydrological information all with risk assessments. Spatial simulation methodologies in the earth sciences are essential, then, if we want to understand the variability in features such as fracture frequencies, rock quality, and grain size distribution in rock and porous media. This book outlines in a detailed yet accessible way the main spatial modeling techniques, in particular the Kriging methodology. It also presents many unique physical approaches, field cases, and sample interpretations. Since Kriging’s origin in the 1960s it has been developed into a number of new methods such as cumulative SV (CSV), point CSV (PCSV), and spatial dependence function, which have been applied in different aspects of the earth sciences. Each one of these techniques is explained in this book, as well as how they are used to model earth science phenomena such as geology, earthquakes, meteorology, and hydrology. In addition to Kriging and its variants, several alternatives to Kriging methodology are presented and the necessary steps in their applications are clearly explained. Simple spatial variation prediction methodologies are also revised with up-to-date literature, and the ways in which they relate to more advanced spatial modeling methodologies are explained. The book is a valuable resource for students, researchers and professionals of a broad range of disciplines including geology, geography, hydrology, meteorology, environment, image processing, spatial modeling and related topics. Keywords »Data mining - Geo-statistics - Kriging - Regional uncertainty - Spatial dependence - Spatial modeling - geographic data - geoscience - hydrology - image processing




COMMON FUNDAMENTALS AND UNIT OPERATIONS IN THERMAL DESALINATION SYSTEMS - Volume II


Book Description

These volumes are part of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The three volumes present state-of-the art subject matter of various aspects of Common Fundamentals and Unit Operations in Thermal Desalination Systems such as: Conventional Water Treatment Technologies; Guidelines for Potable Water Purification; Advanced Treatment Technologies for Recycle - Reuse of Domestic Wastewater; Composition of Desalinated Water; Crystallization; Deep Bed Filtration: Modeling Theory and Practice; Distillation ; Rectification; Flocculation and Flocculation Filtration; Hazardous Waste Treatment Technologies; Microfiltration and Ultrafiltration; Post-Treatment of Distillate and Permeate; Pre-Cleaning Measures: Filtration; Raw Water Pre-Treatment: Sludge Treatment Technologies; Supercritical Extraction; Potential for Industrial Wastewater Reuse; Treatment of Industrial Wastewater by Membrane Bioreactors; Unconventional Sources of Water Supply; Problem of Non-Condensable Gas Release in Evaporators; Entrainment in Evaporators; Mist Eliminators; Chemical Hazards in Seawater Desalination by the Multistage-Flash Evaporation Technique; Concentration of Liquid Foods; Environmental Impact of Seawater Desalination Plants; Environmental Impacts of Intakes and Out Falls; Industrial Ecology, Water Resources, and Desalination; Rural and Urban Water Supply and Sanitation; Sustainable Development, Water Supply and Sanitation Technology These volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers.




Polarization Remote Sensing Physics


Book Description

This book elaborates on the physical principles of polarization remote sensing. It explains the reflective characteristics of surface objects and atmosphere separately, including theory, experiment, instrument and application. In addition, it introduces how polarization remote sensing works in advanced research programs as it can be used in aviation, astronomy, disaster risk prevention and navigation fields. This book serves as a fundamental and comprehensive reference for researchers and students.




Auditory Effects of Microwave Radiation


Book Description

This book examines the human auditory effects of exposure to directed beams of high-power microwave pulses, which research results have shown can cause a cascade of health events when aimed at a human subject or the subject’s head. The book details multidisciplinary investigations using physical theories and models, physiological events and phenomena, and computer analysis and simulation. Coverage includes brain anatomy and physiology, dosimetry of microwave power deposition, microwave auditory effect, interaction mechanisms, shock/pressure wave induction, Havana syndrome, and application in microwave thermoacoustic tomography (MTT). The book will be welcomed by scientists, academics, health professionals, government officials, and practicing biomedical engineers as an important contribution to the continuing study of the effects of microwave pulse absorption on humans.




Waste Water Treatment Technologies  - Volume I


Book Description

Water and Wastewater Treatment Technologies theme is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Water and Wastewater Treatment Technologies deals, in three volumes, and covers several topics, with several issues of great relevance to our world such as: Urban Wastewater Treatment; Characteristics of Effluent Organic Matter in Wastewater; Filtration Technologies in wastewater treatment; Air Stripping in Industrial Wastewater Treatment; Dissolved air flotation in industrial wastewater treatment; Membrane Technology for Organic Removal in Wastewater; Adsorption and Biological Filtration in Wastewater Treatment; Physico-chemical processes for Organic removal from wastewater effluent; Deep Bed Filtration: Modelling Theory And Practice ; Specific options in biological wastewater treatment for reclamation and reuse ; Biological Phosphorus Removal Processes For Wastewater Treatment ; Sequencing Batch Reactors: Principles, Design/Operation And Case Studies ; Wastewater stabilization ponds (WSP)for wastewater treatment; Treatment of industrial wastewater by membrane bioreactors; Stormwater treatment technologies; Sludge Treatment Technologies ; Wastewater Treatment Technology For Tanning Industry; Palm Oil And Palm Waste Potential In Indonesia ; Recirculating Aquaculture Systems – A Review ; Upflow anaerobic sludge blanket (UASB)reactor in wastewater treatment; Applied Technologies In Municipal Solid Waste Landfill Leachate Treatment; Water Mining: Planning and Implementation Issues for a successful project; Assessment methodologies for water reuse scheme and technology; Nanotechnology for Wastewater Treatment. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, Managers, and Decision makers and NGOs W