Spike-based learning application for neuromorphic engineering


Book Description

Spiking Neural Networks (SNN) closely imitate biological networks. Information processing occurs in both spatial and temporal manner, making SNN extremely interesting for the pertinent mimicking of the biological brain. Biological brains code and transmit the sensory information in the form of spikes that capture the spatial and temporal information of the environment with amazing precision. This information is processed in an asynchronous way by the neural layer performing recognition of complex spatio-temporal patterns with sub-milliseconds delay and at with a power budget in the order of 20W. The efficient spike coding mechanism and the asynchronous and sparse processing and communication of spikes seems to be key in the energy efficiency and high-speed computation capabilities of biological brains. SNN low-power and event-based computation make them more attractive when compared to other artificial neural networks (ANN).




Neuromorphic Engineering Systems and Applications


Book Description

Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.




How to Build a Brain


Book Description

How to Build a Brain provides a detailed exploration of a new cognitive architecture - the Semantic Pointer Architecture - that takes biological detail seriously, while addressing cognitive phenomena. Topics ranging from semantics and syntax, to neural coding and spike-timing-dependent plasticity are integrated to develop the world's largest functional brain model.










Handbook of Neuroengineering


Book Description

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​







Event-Based Neuromorphic Systems


Book Description

Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.




Towards Neuromorphic Machine Intelligence


Book Description

Towards Neuromorphic Machine Intelligence: Spike-Based Representation, Learning, and Applications provides readers with in-depth understanding of Spiking Neural Networks (SNNs), which is a burgeoning research branch of Artificial Neural Networks (ANNs), AI, and Machine Learning that sits at the heart of the integration between Computer Science and Neural Engineering. In recent years, neural networks have re-emerged in relation to AI, representing a well-grounded paradigm rooted in disciplines from physics and psychology to information science and engineering.This book represents one of the established cross-over areas where neurophysiology, cognition, and neural engineering coincide with the development of new Machine Learning and AI paradigms. There are many excellent theoretical achievements in neuron models, learning algorithms, network architecture, and so on. But these achievements are numerous and scattered, with a lack of straightforward systematic integration, making it difficult for researchers to assimilate and apply. As the third generation of Artificial Neural Networks (ANNs), Spiking Neural Networks (SNNs) simulate the neuron dynamics and information transmission in a biological neural system in more detail, which is a cross-product of computer science and neuroscience. The primary target audience of this book is divided into two categories: artificial intelligence researchers who know nothing about SNNs, and researchers who know a lot about SNNs. The former needs to acquire fundamental knowledge of SNNs, but the challenge is that much of the existing literature on SNNs only slightly mentions the basic knowledge of SNNs, or is too superficial, and this book gives a systematic explanation from scratch. The latter needs learning about some novel research achievements in the field of SNNs, and this book introduces the latest research results on different aspects of SNNs and provides detailed simulation processes to facilitate readers' replication. In addition, the book introduces neuromorphic hardware architecture as a further extension of the SNN system.The book starts with the birth and development of SNNs, and then introduces the main research hotspots, including spiking neuron models, learning algorithms, network architectures, and neuromorphic hardware. Therefore, the book provides readers with easy access to both the foundational concepts and recent research findings in SNNs. - Introduces Spiking Neural Networks (SNNs), a new generation of biologically inspired artificial intelligence. - Systematically presents basic concepts of SNNs, neuron and network models, learning algorithms, and neuromorphic hardware. - Introduces the latest research results on various aspects of SNNs and provides detailed simulation processes to facilitate readers' replication.