Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry


Book Description

In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.




Introduction to 2-spinors in General Relativity


Book Description

This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter.




Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields


Book Description

Volume 1 introduces and systematically develops the calculus in a first detailed exposition of this technique which provides shortcuts for some very tedious calculations.




An Introduction to Twistor Theory


Book Description

Evolving from graduate lectures given in London and Oxford, this introduction to twistor theory and modern geometrical approaches to space-time structure will provide graduate students with the basics of twistor theory, presupposing some knowledge of special relativity and differenttial geometry.




Space-Time Algebra


Book Description

This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, and enables physicists to understand topics in engineering, and engineers to understand topics in physics (including aspects in frontier areas), in a way which no other single mathematical system could hope to make possible. There is another aspect to Geometric Algebra, which is less tangible, and goes beyond questions of mathematical power and range. This is the remarkable insight it gives to physical problems, and the way it constantly suggests new features of the physics itself, not just the mathematics. Examples of this are peppered throughout ‘Space-Time Algebra’, despite its short length, and some of them are effectively still research topics for the future. From the Foreward by Anthony Lasenby




3-D Spinors, Spin-Weighted Functions and their Applications


Book Description

This book on the theory of three-dimensional spinors and their applications fills an important gap in the literature. It gives an introductory treatment of spinors. From the reviews: "Gathers much of what can be done with 3-D spinors in an easy-to-read, self-contained form designed for applications that will supplement many available spinor treatments. The book...should be appealing to graduate students and researchers in relativity and mathematical physics." -—MATHEMATICAL REVIEWS




The Geometry of Minkowski Spacetime


Book Description

This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.




Techniques of Differential Topology in Relativity


Book Description

Acquaints the specialist in relativity theory with some global techniques for the treatment of space-times and will provide the pure mathematician with a way into the subject of general relativity.




The Theory of Spinors


Book Description

Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.




Quantum Mechanics in the Geometry of Space-Time


Book Description

This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.