Plasmonics and Plasmonic Metamaterials


Book Description

Manipulation of plasmonics from nano to micro scale. 1. Introduction. 2. Form-Birefringent metal and its plasmonic anisotropy. 3. Plasmonic photonic crystal. 4. Fourier plasmonics. 5. Nanoscale optical field localization. 6. Conclusions and outlook -- 11. Dielectric-loaded plasmonic waveguide components. 1. Introduction. 2. Design of waveguide dimensions. 3. Sample preparation and near-field characterization. 4. Excitation and propagation of guided modes. 5. Waveguide bends and splitters. 6. Coupling between waveguides. 7. Waveguide-ring resonators. 8. Bragg gratings. 9. Discussion-- 12. Manipulating nanoparticles and enhancing spectroscopy with surface plasmons. 1. Introduction. 2. Propulsion of gold nanoparticles with surface plasmon polaritons. 3. Double resonance substrates for surface-enhanced raman spectroscopy. 4. Conclusions and outlook -- 13. Analysis of light scattering by nanoobjects on a plane surface via discrete sources method. 1. Introduction. 2. Light scattering by a nanorod. 3. Light scattering by a nanoshell. 4. Summary -- 14. Computational techniques for plasmonic antennas and waveguides. 1. Introduction. 2. Time domain solvers. 3. Frequency domain solvers. 4. Plasmonic antennas. 5. Plasmonic waveguides. 6. Advanced structures. 7. Conclusions




Plasmonics: Fundamentals and Applications


Book Description

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.




Spoof Surface Plasmon Metamaterials


Book Description

Metamaterials offer the possibility to control and manipulate electromagnetic radiation. Spoof surface plasmon metamaterials are the focus of this Element of the Metamaterials Series. The fundamentals of spoof surface plasmons are reviewed, and advances on plasmonic metamaterials based on spoof plasmons are presented. Spoof surface plasmon metamaterials on a wide range of geometries are discussed: from planar platforms to waveguides and localized modes, including cylindrical structures, grooves, wedges, dominos or conformal surface plasmons in ultrathin platforms. The Element closes with a review of recent advances and applications such as Terahertz sensing or integrated devices and circuits.




Waves in Metamaterials


Book Description

Metamaterials is a subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The mathematics of the book is within the power of final year undergraduates: the aim is to explain the physics in simple terms and enumerate the major advances.







Hyperbolic Metamaterials


Book Description

Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.




Spoof Surface Plasmon Polaritons Antenna


Book Description

This book investigates in detail some new spoof surface plasmon polaritons (SSPPs) structures and their applications to antenna. It introduces the working principle and radiation characteristics of directional antenna, omnidirectional antenna, reconfigurable antenna and phase-mode antenna based on SSPPs structure. Especially, the irregular SSPPs structure, such as T-shaped and m-shaped SSPPs structures, is introduced to low-profile end-fire antenna with vertical polarization; the rotated SSPPs structure is applied to CP end-fire antenna and omnidirectional antenna; PIN circuit combining with SSPPs structure is used to pattern reconfigurable antenna; the novel phase-mode SSPPs antennas with multi-modes are performed too. This book proposes a continuous method to develop the potentialities of the SSPPs antenna. And the readers can study the method or ideas of the SSPPs antenna, even graft the methods to other SSPPs antenna. The book is intended for undergraduate and graduate students who are interested in SSPPs antenna technology, researchers investigating high-performance antenna, and antenna design engineers working on multi-function antenna applications.




Metamaterial Surface Plasmon-Based Transmission Lines and Antennas


Book Description

This thesis proposes a reliable and repeatable method for implementing Spoof Surface Plasmon (SSP) modes in the design of various circuit components. It also presents the first equivalent circuit model for plasmonic structures, which serves as an insightful guide to designing SSP-based circuits. Today, electronic circuits and systems are developing rapidly and becoming an indispensable part of our daily life; however the issue of compactness in integrated circuits remains a formidable challenge. Recently, the Spoof Surface Plasmon (SSP) modes have been proposed as a novel platform for highly compact electronic circuits. Despite extensive research efforts in this area, there is still an urgent need for a systematic design method for plasmonic circuits. In this thesis, different SSP-based transmission lines, antenna feeding networks and antennas are designed and experimentally evaluated. With their high field confinement, the SSPs do not suffer from the compactness limitations of traditional circuits and are capable of providing an alternative platform for the future generation of electronic circuits and electromagnetic systems.




Metamaterials


Book Description

Metamaterials: Beyond Crystals, Noncrystals, and Quasicrystals is a comprehensive and updated research monograph that focuses on recent advances in metamaterials based on the effective medium theory in microwave frequencies. Most of these procedures were conducted in the State Key Laboratory of Millimeter Waves, Southeast University, China. The book conveys the essential concept of metamaterials from the microcosmic structure to the macroscopic electromagnetic properties and helps readers quickly obtain needed skills in creating new devices at microwave frequencies using metamaterials. The authors present the latest progress on metamaterials and transformation optics and provide abundant examples of metamaterial-based devices accompanied with detailed procedures to simulate, fabricate, and measure them. Comprised of ten chapters, the book comprehensively covers both the fundamentals and the applications of metamaterials. Along with an introduction to the subject, the first three chapters discuss effective medium theory and artificial particles. The next three chapters cover homogeneous metamaterials (super crystals), random metamaterials (super noncrystals), and inhomogeneous metamaterials (super quasicrystals). The final four chapters examine gradient-index inhomogeneous metamaterials, nearly isotropic inhomogeneous metamaterials, and anisotropic inhomogeneous metamaterials, after which the authors provide their conclusions and closing remarks. The book is completely self-contained, making it easy to follow.