Sputtering Materials for VLSI and Thin Film Devices


Book Description

An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall productivity of various processes. Two unique chapters of this book deal with productivity and troubleshooting issues. The content of the book has been divided into two sections: (a) the first section (Chapter 1 to Chapter 3) has been prepared for the readers from a range of disciplines (e.g. electrical, chemical, chemistry, physics) trying to get an insight into use of sputtered films in various devices (e.g. semiconductor, display, photovoltaic, data storage), basic of sputtering and performance of sputtering target in relation to productivity, and (b) the second section (Chapter 4 to Chapter 8) has been prepared for readers who already have background knowledge of sputter deposition of thin films, materials science principles and interested in the details of sputtering target manufacturing methods, sputtering behavior and thin film properties specific to semiconductor, liquid crystal display, photovoltaic and magnetic data storage applications. In Chapters 5 to 8, a general structure has been used, i.e. a description of the applications of sputtered thin films, sputtering target manufacturing methods (including flow charts), sputtering behavior of targets (e.g. current - voltage relationship, deposition rate) and thin film properties (e.g. microstructure, stresses, electrical properties, in-film particles). While discussing these topics, attempts have been made to include examples from the actual commercial processes to highlight the increased complexity of the commercial processes with the growth of advanced technologies. In addition to personnel working in industry setting, university researchers with advanced knowledge of sputtering would also find discussion of such topics (e.g. attributes of target design, chamber design, target microstructure, sputter surface characteristics, various troubleshooting issues) useful. . - Unique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements - Practical information on technology trends, role of sputtering and major OEMs - Discussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc. - Practical case-studies on target performance and troubleshooting - Essential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry




Coating Materials


Book Description

This book comprehensively reviews assorted types of coatings, their applications, and various strategies employed by several scientists and researchers to fabricate them. Exclusively, the recent progress in computational strategies that are helpful to optimize the best suitable coating formulation before one goes for the real-time fabrication has been discussed in detail. And this book is also intended to shed light on the computational modeling techniques that are used in the characterization of various coating materials. It covers mechanisms, salient features, formulations, important aspects, and case studies of coatings utilized for various applications. The latest research in this area as well as possible avenues of future research is also highlighted to encourage the researchers.




The Foundations of Vacuum Coating Technology


Book Description

The Foundations of Vacuum Coating Technology, Second Edition, is a revised and expanded version of the first edition, which was published in 2003. The book reviews the histories of the various vacuum coating technologies and expands on the history of the enabling technologies of vacuum technology, plasma technology, power supplies, and low-pressure plasma-enhanced chemical vapor deposition. The melding of these technologies has resulted in new processes and products that have greatly expanded the application of vacuum coatings for use in our everyday lives. The book is unique in that it makes extensive reference to the patent literature (mostly US) and how it relates to the history of vacuum coating. The book includes a Historical Timeline of Vacuum Coating Technology and a Historical Timeline of Vacuum/Plasma Technology, as well as a Glossary of Terms used in the vacuum coating and surface engineering industries. - History and detailed descriptions of Vacuum Deposition Technologies - Review of Enabling Technologies and their importance to current applications - Extensively referenced text - Patents are referenced as part of the history - Historical Timelines for Vacuum Coating Technology and Vacuum/Plasma Technology - Glossary of Terms for vacuum coating




Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications


Book Description

Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications discusses in detail, the recent trends in designing, fabricating and manufacturing of smart coatings and thin films for future high-tech. industrial applications related to transportation, aerospace and biomedical engineering. Chapters cover fundamental aspects and diverse approaches used to fabricate smart self-healing anti-corrosion coatings, shape-memory coatings, polymeric and nano-bio-ceramic cotings, bio-inspired and stimuli-responsive coatings for smart surfaces with antibacterial activkity and controlled wettability, and electrically conductive coatings and their emerging applications. With the emphasis on advanced methodologies and recent emerging applications of smart multifunctional coatings and thin films, this book is essential reading for materials scientists and rsearchers working in chemical sciences, advanced materials, sensors, pharmaceutical and biomedical engineering. - Discusses the most recent advances and innovations in smart multifunctional coatings and thin films in the transportation, aerospace and biomedical engineering industries - Highlights the synthesis methods, processing, testing and characterization of smart coatings and thin films - Reviews the current prospects and future trends within the industry




Perovskite Ceramics


Book Description

Perovskite-based ceramics are a significant class of innovative materials with fascinating physical properties, which are now receiving intensive research attention in condensed matter physics and in the area of practical device applications. Perovskite Ceramics provides a state-of-the-art review on the latest advances in perovskite-based ceramic materials, as well as the development of devices from these materials for different applications. Perovskite Ceramics: Recent Advances and Emerging Applications is divided into two main parts. The first part focuses on the basics of perovskite-based ceramic materials and includes chapters on the fundamentals, synthesis and processing, characterization, and properties of these materials. Chapters are also included on bulk and thin materials, phase transitions, polaronic effects and the compensation and screening of ferroelectricity. This section will allow the reader to familiarize themselves with the standard traditional approach, but it will also introduce new concepts that are fast evolving in this field. The second part presents an extensive review of up-to-date research on new and innovative advances in perovskite-based ceramic materials. Chapters cover multiferroic applications, lead-free perovskites, energy storage applications, perovskite-based memories, light manipulation and spectral modifications, and solar cells and fuel cells. All these fields of research are rapidly evolving, so the book acts a platform to showcase latest results on optical strategies and materials for light manipulation, and spectral up- and down-conversion too (mainly rare earth doped oxides and complexes). The book will be an essential reference resource for academic and industrial researchers working in materials research and development particularly in functional and oxide ceramics and perovskites. - A comprehensive and systematic review of advanced research in perovskite-based ceramics - Covers both oxide and halide perovskites, their synthesis, processing, properties and applications - Presents advanced methods of synthesis as well as latest applications - Discusses all aspects from theory to production - Covers the most important advances both in terms of new materials and application strategies




High Mobility Materials for CMOS Applications


Book Description

High Mobility Materials for CMOS Applications provides a comprehensive overview of recent developments in the field of (Si)Ge and III-V materials and their integration on Si. The book covers material growth and integration on Si, going all the way from device to circuit design. While the book's focus is on digital applications, a number of chapters also address the use of III-V for RF and analog applications, and in optoelectronics. With CMOS technology moving to the 10nm node and beyond, however, severe concerns with power dissipation and performance are arising, hence the need for this timely work on the advantages and challenges of the technology. - Addresses each of the challenges of utilizing high mobility materials for CMOS applications, presenting possible solutions and the latest innovations - Covers the latest advances in research on heterogeneous integration, gate stack, device design and scalability - Provides a broad overview of the topic, from materials integration to circuits




TMS 2016 Supplemental Proceedings


Book Description

The TMS 2016 Annual Meeting Supplemental Proceedings is a collection of papers from the TMS 2016 Annual Meeting & Exhibition, held February 14-18 in Nashville, Tennessee, USA. The papers in this volume represent 21 symposia from the meeting. This volume, along with the other proceedings volumes published for the meeting, and archival journals, such as Metallurgical and Materials Transactions and Journal of Electronic Materials, represents the available written record of the 67 symposia held at TMS2016. This proceedings volume contains both edited and unedited papers; the unedited papers have not necessarily been reviewed by the symposium organizers and are presented “as is.” The opinions and statements expressed within the papers are those of the individual authors only, and no confirmations or endorsements are intended or implied.







Nano Optoelectronic Sensors and Devices


Book Description

Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy. Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis) Explores key application areas such as sensing, electronics and solar energy




Ceramic Thick Films for MEMS and Microdevices


Book Description

The MEMS (Micro Electro-Mechanical Systems) market returned to growth in 2010. The total MEMS market is worth about $6.5 billion, up more than 11 percent from last year and nearly as high as its historic peak in 2007. MEMS devices are used across sectors as diverse as automotive, aerospace, medical, industrial process control, instrumentation and telecommunications - forming the nerve center of products including airbag crash sensors, pressure sensors, biosensors and ink jet printer heads. Part of the MEMS cluster within the Micro & Nano Technologies Series, this book covers the fabrication techniques and applications of thick film piezoelectric micro electromechanical systems (MEMS). It includes examples of applications where the piezoelectric thick films have been used, illustrating how the fabrication process relates to the properties and performance of the resulting device. Other topics include: top-down and bottom-up fabrication of thick film MEMS, integration of thick films with other materials, effect of microstructure on properties, device performance, etc. Provides detailed guidance on the fabrication techniques and applications of thick film MEMS, for engineers and R&D groups Written by a single author, this book provides a clear, coherently written guide to this important emerging technology Covers materials, fabrication and applications in one book