Stability Analysis, Flexible Control and Optimal Operation of Microgrid


Book Description

This book intends to report the new results of the microgrid in stability analysis, flexible control and optimal operation. The oscillatory stability issue of DC microgrid is explored and further solved. Flexible and stable voltage & frequency control of microgrid is put forward considering the distributed generations or distributed energy storages. The optimal operation of multi-energy is researched in view of economic efficiency and low-carbon development. The results of this book are original from authors who carry out the related research together for a long time, which is a comprehensive summary for authors’ latest research results. The book is likely to be of interest to university researchers, electrical engineers and graduate students in power systems, power electronics, renewable energy and microgrid.




Microgrids and Methods of Analysis


Book Description

The increasing penetration of distributed energy resource (DER), distributed generation (DG) and energy storage system (ESS) units in distribution grids leads to the emergence of the concepts of active distribution networks (ADNs), microgrids, and virtual power plants. Nowadays, the use of electronically-coupled distributed energy resources is of great interest that can provide the power of demand side alone or in a small electricity grid. A microgrid is a small-scale power grid in low voltage network that must be able to locally solve energy issues and enhance the flexibility and can operate either in grid-connected or islanded/autonomous mode of operation. To study them, researchers need an appropriate set of methods, software tools, analogous to those exist for large interconnected power systems.The book Microgrids and Methods of Analysis addresses systematic analysis, control/protection systems design, and optimal operation of a distribution system under high penetration of DERs analogous to those that exist for large interconnected power systems. - Provides professional guidlines for system planners - Explores further research, development, and optimization of existing and new microgrids - Addresses analytical methods used for microgrid analysis using advanced research




Small-Signal Stability Modelling and Optimization of Microgrids


Book Description

The stability of power systems and microgrids is compromised by the increasing penetration with power electronic devices, such as wind turbines, photovoltaics and batteries. A simulation and optimization environment for such low-inertia systems is created. It is investigated how accurate the models need to be to capture the prevailing modes. An evolutionary algorithm tailored to optimization problems with computationally intensive fitness evaluation is proposed in order to optimized the controller parameters of grid-forming and grid-supporting distributed generators. It becomes apparent that microgrids dominated by grid-forming inverters are very stable systems when well-designed and optimized controllers are used. Model simplifications, such as the neglect of inner control loops of inverters, must be examined carefully, as they can lead to an inaccurate stability assessment.




Model Predictive Control of Microgrids


Book Description

The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.










Demand-side Flexibility in Smart Grid


Book Description

This book highlights recent advances in the identification, prediction and exploitation of demand side (DS) flexibility and investigates new methods of predicting DS flexibility at various different power system (PS) levels. Renewable energy sources (RES) are characterized by volatile, partially unpredictable and mostly non-dispatchable generation. The main challenge in terms of integrating RES into power systems is their intermittency, which negatively affects the power balance. Addressing this challenge requires an increase in the available PS flexibility, which in turn requires accurate estimation of the available flexibility on the DS and aggregation solutions at the system level. This book discusses these issues and presents solutions for effectively tackling them.




Advanced Hierarchical Control and Stability Analysis of DC Microgrids


Book Description

This book introduces several novel contributions into the current literature. Firstly, given that microgrid topologies are paramount in theoretical analysis, the author has proposed a rigorous method of computing the network’s admittance matrix and developed to facilitate the stability analysis of DC microgrids supplying nonlinear loads. This unique approach enabled the factorisation of the admittance matrix in a particular way that facilitates a rigorous theoretical analysis for deriving the stability conditions. Secondly, author has proposed a unified control structure at the primary control layer that maintains the widely accepted droop-based approaches and additionally ensures crucial current- and voltage-limiting properties, thus offering an inherent protection to distributed energy resources. He has formalised the control design proofs using Lyapunov methods and nonlinear ultimate boundedness theory, for both parallel and meshed microgrid configurations. Moreover, he has developed a distributed secondary controller using a diffusive coupling communication network, on top of the primary control, to achieve voltage restoration and improve the power sharing. In this way, the author has formulated the complete hierarchical control scheme. In this high-order nonlinear setting, he has analytically proven closed-loop system stability of the overall system, for the first time, using two-time scale approaches and singular perturbation theory, by formulating rigorous theorems that introduce straightforward conditions that guide the system and control design and demonstrate system stability at the desired equilibrium point. In addition, the author has provided a straightforward algorithm for simple testing of system stability and explored from a graphical perspective by giving an interpretation to the effect of the nonlinear load onto the system performance and stability.




New Technologies for Power System Operation and Analysis


Book Description

New Technologies for Power System Operation and Analysis considers the very latest developments in renewable energy integration and system operation, including electricity markets and wide-area monitoring systems and forecasting. Helping readers quickly grasp the essential information needed to address renewable energy integration challenges, this new book looks at basic power system mathematical models, advanced renewable integration and system optimizations from transmission and distribution system sides. Sections cover wind, solar, gas and petroleum, making this a useful reference for all engineers interested in power system operation. - Includes codes in MATLAB® and Python - Provides a complete analysis of all new and relevant power system technologies - Covers the impact on existing power system operations at the advanced level, with detailed technical insights




Model Predictive Control for Microgrids


Book Description

Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.