Stability and Control of Large-Scale Dynamical Systems


Book Description

Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of technological, environmental, and social phenomena. This book develops stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems.




Large-scale Dynamic Systems


Book Description




Stability and Control of Large-Scale Dynamical Systems


Book Description

Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynamical systems are strongly interconnected and consist of interacting subsystems exchanging matter, energy, or information with the environment. The sheer size, or dimensionality, of these systems necessitates decentralized analysis and control system synthesis methods for their analysis and design. Written in a theorem-proof format with examples to illustrate new concepts, this book addresses continuous-time, discrete-time, and hybrid large-scale systems. It develops finite-time stability and finite-time decentralized stabilization, thermodynamic modeling, maximum entropy control, and energy-based decentralized control. This book will interest applied mathematicians, dynamical systems theorists, control theorists, and engineers, and anyone seeking a fundamental and comprehensive understanding of large-scale interconnected dynamical systems and control.




Stability and Control of Dynamical Systems with Applications


Book Description

It is with great pleasure that I offer my reflections on Professor Anthony N. Michel's retirement from the University of Notre Dame. I have known Tony since 1984 when he joined the University of Notre Dame's faculty as Chair of the Depart ment of Electrical Engineering. Tony has had a long and outstanding career. As a researcher, he has made im portant contributions in several areas of systems theory and control theory, espe cially stability analysis of large-scale dynamical systems. The numerous awards he received from the professional societies, particularly the Institute of Electrical and Electronics Engineers (IEEE), are a testament to his accomplishments in research. He received the IEEE Control Systems Society's Best Transactions Paper Award (1978), and the IEEE Circuits and Systems Society's Guillemin-Cauer Prize Paper Award (1984) and Myril B. Reed Outstanding Paper Award (1993), among others. In addition, he was a Fulbright Scholar (1992) and received the Alexander von Hum boldt Forschungspreis (Alexander von Humboldt Research Award for Senior U.S. Scientists) from the German government (1997). To date, he has written eight books and published over 150 archival journal papers. Tony is also an effective administrator who inspires high academic standards.




Approximation of Large-Scale Dynamical Systems


Book Description

Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.




Impulsive and Hybrid Dynamical Systems


Book Description

This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar treatments by developing invariant set stability theorems, partial stability, Lagrange stability, boundedness, ultimate boundedness, dissipativity theory, vector dissipativity theory, energy-based hybrid control, optimal control, disturbance rejection control, and robust control for nonlinear impulsive and hybrid dynamical systems. A major contribution to mathematical system theory and control system theory, this book is written from a system-theoretic point of view with the highest standards of exposition and rigor. It is intended for graduate students, researchers, and practitioners of engineering and applied mathematics as well as computer scientists, physicists, and other scientists who seek a fundamental understanding of the rich dynamical behavior of impulsive and hybrid dynamical systems.




Qualitative Analysis of Large Scale Dynamical Systems


Book Description

This book develops a unified approach to qualitative analysis of large scale systems described by many diversified types of equations.




Stability Theory of Large Scale Dynamical Systems for You !


Book Description

This updated and expanded second edition of Book provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements, which can be used as a learning material for students pursuing their studies in undergraduate and graduate levels in universities and colleges and those who want to learn the topic via a short and complete resource. We hope you find this book useful in shaping your future career.




A Dynamical Systems Theory of Thermodynamics


Book Description

A brand-new conceptual look at dynamical thermodynamics This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mechanics with that of classical thermodynamics. This book includes topics on nonequilibrium irreversible thermodynamics, Boltzmann thermodynamics, mass-action kinetics and chemical reactions, finite-time thermodynamics, thermodynamic critical phenomena with continuous and discontinuous phase transitions, information theory, continuum and stochastic thermodynamics, and relativistic thermodynamics. A Dynamical Systems Theory of Thermodynamics develops a postmodern theory of thermodynamics as part of mathematical dynamical systems theory. The book establishes a clear nexus between thermodynamic irreversibility, the second law of thermodynamics, and the arrow of time to further unify discreteness and continuity, indeterminism and determinism, and quantum mechanics and general relativity in the pursuit of understanding the most fundamental property of the universe—the entropic arrow of time.




Stability Theory of Large Scale Dynamical Systems


Book Description

Thought-provoking and accessible in approach, this updated and expanded second edition of the Stability Theory Of Large Scale Dynamical Systems: The Ultimate Training Cours provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for advanced graduate-level students. We hope you find this book useful in shaping your future career. Feel free to send us your enquiries related to our publications to [email protected]