Stabilization of Distributed Parameter Systems: Design Methods and Applications


Book Description

This book presents recent results and envisages new solutions of the stabilization problem for infinite-dimensional control systems. Its content is based on the extended versions of presentations at the Thematic Minisymposium “Stabilization of Distributed Parameter Systems: Design Methods and Applications” at ICIAM 2019, held in Valencia from 15 to 19 July 2019. This volume aims at bringing together contributions on stabilizing control design for different classes of dynamical systems described by partial differential equations, functional-differential equations, delay equations, and dynamical systems in abstract spaces. This includes new results in the theory of nonlinear semigroups, port-Hamiltonian systems, turnpike phenomenon, and further developments of Lyapunov's direct method. The scope of the book also covers applications of these methods to mathematical models in continuum mechanics and chemical engineering. It is addressed to readers interested in control theory, differential equations, and dynamical systems.




Port-Hamiltonian Systems Theory


Book Description

Port-Hamiltonian Systems Theory: An Introductory Overview provides a concise and easily accessible description of the foundations underpinning the subject and emphasizes novel developments in the field, which will be of interest to a broad range of researchers.




Strongly Stabilizable Distributed Parameter Systems


Book Description

Questions about stability arise in almost every control problem. There are many physical problems in which exponential stability is too strong and for which the concept of strong stability is appropriate. This book provides a solid mathematical framework for a structured approach to strongly stabilizable systems through integration of fundamental theory, physical applications, and numerical results. The author includes a mathematical framework for studying PDE models of large flexible structures, an important class of applications.




Control of Distributed Parameter Systems 1989


Book Description

This volume presents state-of-the-art reports on the theory, and current and future applications of control of distributed parameter systems. The papers cover the progress not only in traditional methodology and pure research in control theory, but also the rapid growth of its importance for different applications. This title will be of interest to researchers working in the areas of mathematics, automatic control, computer science and engineering.




Partial Stabilization and Control of Distributed Parameter Systems with Elastic Elements


Book Description

This monograph provides a rigorous treatment of problems related to partial asymptotic stability and controllability for models of flexible structures described by coupled nonlinear ordinary and partial differential equations or equations in abstract spaces. The text is self-contained, beginning with some basic results from the theory of continuous semigroups of operators in Banach spaces. The problem of partial asymptotic stability with respect to a continuous functional is then considered for a class of abstract multivalued systems on a metric space. Next, the results of this study are applied to the study of a rotating body with elastic attachments. Professor Zuyev demonstrates that the equilibrium cannot be made strongly asymptotically stable in the general case, motivating consideration of the problem of partial stabilization with respect to the functional that represents “averaged” oscillations. The book’s focus moves on to spillover analysis for infinite-dimensional systems with finite-dimensional controls. It is shown that a family of L2-minimal controls, corresponding to low frequencies, can be used to obtain approximate solutions of the steering problem for the complete system. The book turns from the examination of an abstract class of systems to particular physical examples. Timoshenko beam theory is exploited in studying a mathematical model of a flexible-link manipulator. Finally, a mechanical system consisting of a rigid body with the Kirchhoff plate is considered. Having established that such a system is not controllable in general, sufficient controllability conditions are proposed for the dynamics on an invariant manifold. Academic researchers and graduate students interested in control theory and mechanical engineering will find Partial Stabilization and Control of Distributed-Parameter Systems with Elastic Elements a valuable and authoritative resource for investigations on the subject of partial stabilization.




Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces


Book Description

This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.




Control and Estimation in Distributed Parameter Systems


Book Description

Research in control and estimation of distributed parameter systems encompasses a wide range of applications including both fundamental science and emerging technologies. The latter include smart materials (piezoceramics, shape memory alloys, magnetostrictives, electrorheological fluids) fabrication and testing, design of high-pressure chemical vapor deposition (CVD) reactors for production of microelectronic surfaces (e.g., semiconductors), while the former include groundwater contamination cleanup and other environmental modeling questions, climatology, flow control, and fluid-structure interactions as well as more traditional topics in biology, mechanics, and acoustics. These expository papers provide substantial stimulus to both young researchers and experienced investigators in control theory. Includes a comprehensive and lucid presentation that relates frequency domain techniques to state-space or time domain approaches for infinite-dimensional systems including design of robust stabilizing and finite-dimensional controllers for infinite-dimensional systems. It focuses on these two approaches to control design in an integrated system theoretic framework. This is excellent reading for researchers in both the frequency domain and time domain control communities. In other articles, topics considered include pointwise control of distributed parameter systems, bounded and unbounded sensors and actuators, stabilization issues for large flexible structures, and an overview discussion of damping models for flexible structures.




Input-to-State Stability for PDEs


Book Description

This book lays the foundation for the study of input-to-state stability (ISS) of partial differential equations (PDEs) predominantly of two classes—parabolic and hyperbolic. This foundation consists of new PDE-specific tools. In addition to developing ISS theorems, equipped with gain estimates with respect to external disturbances, the authors develop small-gain stability theorems for systems involving PDEs. A variety of system combinations are considered: PDEs (of either class) with static maps; PDEs (again, of either class) with ODEs; PDEs of the same class (parabolic with parabolic and hyperbolic with hyperbolic); and feedback loops of PDEs of different classes (parabolic with hyperbolic). In addition to stability results (including ISS), the text develops existence and uniqueness theory for all systems that are considered. Many of these results answer for the first time the existence and uniqueness problems for many problems that have dominated the PDE control literature of the last two decades, including—for PDEs that include non-local terms—backstepping control designs which result in non-local boundary conditions. Input-to-State Stability for PDEs will interest applied mathematicians and control specialists researching PDEs either as graduate students or full-time academics. It also contains a large number of applications that are at the core of many scientific disciplines and so will be of importance for researchers in physics, engineering, biology, social systems and others.




Boundary Control of PDEs


Book Description

The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.




Control of Distributed Parameter Systems 1982


Book Description

Control of Distributed Parameter Systems 1982 covers the proceeding of the Third International Federation of Automatic Control (IFAC) Symposium on Control of Distributed Parameter Systems. The book reviews papers that tackle issues concerning the control of distributed parameter systems, such as modeling, identification, estimation, stabilization, optimization, and energy system. The topics that the book tackles include notes on optimal and estimation result of nonlinear systems; approximation of the parameter identification problem in distributed parameters systems; and optimal control of a punctually located heat source. This text also encompasses the stabilization of nonlinear parabolic equations and the decoupling approach to the control of large spaceborne antenna systems. Stability of Hilbert space contraction semigroups and the tracking problem in the fractional representation approach are also discussed. This book will be of great interest to researchers and professionals whose work concerns automated control systems.