Dynamical Processes on Complex Networks


Book Description

The availability of large data sets has allowed researchers to uncover complex properties such as large-scale fluctuations and heterogeneities in many networks, leading to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. This book presents a comprehensive account of these effects. A vast number of systems, from the brain to ecosystems, power grids and the internet, can be represented as large complex networks. This book will interest graduate students and researchers in many disciplines, from physics and statistical mechanics to mathematical biology and information science. Its modular approach allows readers to readily access the sections of most interest to them, and complicated maths is avoided so the text can be easily followed by non-experts in the subject.




Modularity and Dynamics on Complex Networks


Book Description

Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.




Dynamical Systems on Networks


Book Description

This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.




Dynamics On and Of Complex Networks


Book Description

This self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Topics covered include complex networks found in nature—genetic pathways, ecological networks, linguistic systems, and social systems—as well as man-made systems such as the World Wide Web and peer-to-peer networks. The contributed chapters in this volume are intended to promote cross-fertilization in several research areas, and will be valuable to newcomers in the field, experienced researchers, practitioners, and graduate students interested in systems exhibiting an underlying complex network structure in disciplines such as computer science, biology, statistical physics, nonlinear dynamics, linguistics, and the social sciences.




Algebraic and Discrete Mathematical Methods for Modern Biology


Book Description

Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources




Understanding Complex Ecosystem Dynamics


Book Description

Understanding Complex Ecosystem Dynamics: A Systems and Engineering Perspective takes a fresh, interdisciplinary perspective on complex system dynamics, beginning with a discussion of relevant systems and engineering skills and practices, including an explanation of the systems approach and its major elements. From this perspective, the author formulates an ecosystem dynamics functionality-based framework to guide ecological investigations. Next, because complex system theory (across many subject matter areas) is crucial to the work of this book, relevant network theory, nonlinear dynamics theory, cellular automata theory, and roughness (fractal) theory is covered in some detail. This material serves as an important resource as the book proceeds. In the context of all of the foregoing discussion and investigation, a view of the characteristics of ecological network dynamics is constructed. This view, in turn, is the basis for the central hypothesis of the book, i.e., ecological networks are ever-changing networks with propagation dynamics that are punctuated, local-to-global, and perhaps most importantly fractal. To analyze and fully test this hypothesis, an innovative ecological network dynamics model is defined, designed, and developed. The modeling approach, which seeks to emulate features of real-world ecological networks, does not make a priori assumptions about ecological network dynamics, but rather lets the dynamics develop as the model simulation runs. Model analysis results corroborate the central hypothesis. Additional important insights and principles are suggested by the model analysis results and by the other supporting investigations of this book – and can serve as a basis for going-forward complex system dynamics research, not only for ecological systems but for complex systems in general. - Provides a fresh interdisciplinary perspective, offers a broad integrated development, and contains many new ideas - Clearly explains the elements of the systems approach and applies them throughout the book - Takes on the challenging and open issues of complex system network dynamics - Develops and utilizes a new, innovative ecosystem dynamics modeling approach - Contains over 135 graphic illustrations to help the reader visualize and understand important concepts




Propagation Dynamics on Complex Networks


Book Description

Explores the emerging subject of epidemic dynamics on complex networks, including theories, methods, and real-world applications Throughout history epidemic diseases have presented a serious threat to human life, and in recent years the spread of infectious diseases such as dengue, malaria, HIV, and SARS has captured global attention; and in the modern technological age, the proliferation of virus attacks on the Internet highlights the emergent need for knowledge about modeling, analysis, and control in epidemic dynamics on complex networks. For advancement of techniques, it has become clear that more fundamental knowledge will be needed in mathematical and numerical context about how epidemic dynamical networks can be modelled, analyzed, and controlled. This book explores recent progress in these topics and looks at issues relating to various epidemic systems. Propagation Dynamics on Complex Networks covers most key topics in the field, and will provide a valuable resource for graduate students and researchers interested in network science and dynamical systems, and related interdisciplinary fields. Key Features: Includes a brief history of mathematical epidemiology and epidemic modeling on complex networks. Explores how information, opinion, and rumor spread via the Internet and social networks. Presents plausible models for propagation of SARS and avian influenza outbreaks, providing a reality check for otherwise abstract mathematical modeling. Considers various infectivity functions, including constant, piecewise-linear, saturated, and nonlinear cases. Examines information transmission on complex networks, and investigates the difference between information and epidemic spreading.




Multilayer Networks


Book Description

Multilayer networks' has become a central topic in Network Science. The book presents a comprehensive account of this emerging field. Multilayer networks are formed by several networks and include social networks, financial markets, multi-modal transportation systems, infrastructures, molecular networks and the brain.--




Statistical Physics and Computational Methods for Evolutionary Game Theory


Book Description

This book presents an introduction to Evolutionary Game Theory (EGT) which is an emerging field in the area of complex systems attracting the attention of researchers from disparate scientific communities. EGT allows one to represent and study several complex phenomena, such as the emergence of cooperation in social systems, the role of conformity in shaping the equilibrium of a population, and the dynamics in biological and ecological systems.Since EGT models belong to the area of complex systems, statistical physics constitutes a fundamental ingredient for investigating their behavior. At the same time, the complexity of some EGT models, such as those realized by means of agent-based methods, often require the implementation of numerical simulations. Therefore, beyond providing an introduction to EGT, this book gives a brief overview of the main statistical physics tools (such as phase transitions and the Ising model) and computational strategies for simulating evolutionary games (such as Monte Carlo algorithms on lattices). This book will appeal to students and researchers in this burgeoning field of complex systems.




Higher Order Networks: An Introduction to Simplicial Complexes


Book Description

This Element presents one of the most recent developments in network science in a highly accessible style. This Element will be of interest to interdisciplinary scientists working in network science, in addition to mathematicians working in discrete topology and geometry and physicists working in quantum gravity.