Stabilization and H∞ Control of Switched Dynamic Systems


Book Description

This book presents several novel constructive methodologies for global stabilization and H-infinity control in switched dynamic systems by using the systems’ structure information. The main features of these new approaches are twofold: i) Novel Lyapunov functions are constructed and new switching strategies are designed to guarantee global finite-time stabilization of the closed-loop switched dynamic systems,while ii) without posing any internal stability requirements on subsystems, the standard H-infinity control problem of the switched dynamic systems is solved by means of dwell-time switching techniques. Systematically presenting constructive methods for analyzing and synthesizing switched systems, the content is of great significance to theoretical research and practical applications involving switched systems alike. The book provides a unified framework for stability analysis, stabilization and H-infinity control of switched systems, making it a valuable resource for researchers and graduate students who want to learn about the state of the art in the analysis and synthesis of switched systems, as well as recent advances in switched linear systems. In addition, it offers a wealth of cutting-edge constructive methods and algorithm designs for researchers who work with switched dynamic systems and graduate students of control theory and control engineering.




Stabilization of Nonlinear Uncertain Systems


Book Description

This monograph presents the fundamentals of global stabilization and optimal control of nonlinear systems with uncertain models. It offers a unified view of deterministic disturbance attenuation, stochastic control, and adaptive control for nonlinear systems. The book addresses researchers in the areas of robust and adaptive nonlinear control, nonlinear H-infinity stochastic control, and other related areas of control and dynamical systems theory.










Stability and Stabilization


Book Description

Stability and Stabilization is the first intermediate-level textbook that covers stability and stabilization of equilibria for both linear and nonlinear time-invariant systems of ordinary differential equations. Designed for advanced undergraduates and beginning graduate students in the sciences, engineering, and mathematics, the book takes a unique modern approach that bridges the gap between linear and nonlinear systems. Presenting stability and stabilization of equilibria as a core problem of mathematical control theory, the book emphasizes the subject's mathematical coherence and unity, and it introduces and develops many of the core concepts of systems and control theory. There are five chapters on linear systems and nine chapters on nonlinear systems; an introductory chapter; a mathematical background chapter; a short final chapter on further reading; and appendixes on basic analysis, ordinary differential equations, manifolds and the Frobenius theorem, and comparison functions and their use in differential equations. The introduction to linear system theory presents the full framework of basic state-space theory, providing just enough detail to prepare students for the material on nonlinear systems. Focuses on stability and feedback stabilization Bridges the gap between linear and nonlinear systems for advanced undergraduates and beginning graduate students Balances coverage of linear and nonlinear systems Covers cascade systems Includes many examples and exercises




Stabilization, Safety, and Security of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 10th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2008, held in Detroit, MI, USA, in November 2008. The 17 revised full papers presented together with the abstracts of 3 invited lectures were carefully reviewed and selected from 43 submissions. The papers address all safety and security-related aspects of self-stabilizing systems in various areas of distributed computing including peer-to-peer networks, wireless sensor networks, mobile ad-hoc networks, and robotic networks. The papers are organized in topical sections on MAC layer protocols, wireless networks, stabilizing algorithms, as well as security and system models.







Stabilization, Safety, and Security of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 22nd International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2020, held in Austin, TX, USA, in November 2020. The 16 full papers, 7 short and 2 invited papers presented were carefully reviewed and selected from 44 submissions. The papers deal with the design and development of distributed systems with a focus on systems that are able to provide guarantees on their structure, performance, and/or security in the face of an adverse operational environment.




Stabilization, Safety, and Security of Distributed Systems


Book Description

This book constitutes the thoroughly refereed proceedings of the 15 International Symposium on Stabilization, Safety and Security of Distributed Systems, SSS 2013, held in Osaka, Japan, in November 2013. The 23 regular papers and 12 short papers presented were carefully reviewed and selected from 68 submissions. The Symposium is organized in several tracks, reflecting topics to self-* properties. The tracks are self-stabilization, fault tolerance and dependability; formal methods and distributed systems; ad-hoc, sensors, mobile agents and robot networks and P2P, social, self-organizing, autonomic and opportunistic networks.




Stabilization, Safety, and Security of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 16 International Symposium on Stabilization, Safety and Security of Distributed Systems, SSS 2013, held in Osaka, Japan, in September/October 2014. The 21 regular papers and 8 short papers presented were carefully reviewed and selected from 44 submissions. The Symposium is organized in several tracks, reflecting topics to self-* properties. The tracks are self-stabilization; ad-hoc; sensor and mobile networks; cyberphysical systems; fault-tolerant and dependable systems; formal methods; safety and security; and cloud computing; P2P; self-organizing; and autonomous systems.