Molecular Microbiology


Book Description

Presenting the latest molecular diagnostic techniques in one comprehensive volume The molecular diagnostics landscape has changed dramatically since the last edition of Molecular Microbiology: Diagnostic Principles and Practice in 2011. With the spread of molecular testing and the development of new technologies and their opportunities, laboratory professionals and physicians more than ever need a resource to help them navigate this rapidly evolving field. Editors David Persing and Fred Tenover have brought together a team of experienced researchers and diagnosticians to update this third edition comprehensively, to present the latest developments in molecular diagnostics in the support of clinical care and of basic and clinical research, including next-generation sequencing and whole-genome analysis. These updates are provided in an easy-to-read format and supported by a broad range of practical advice, such as determining the appropriate type and quantity of a specimen, releasing and concentrating the targets, and eliminating inhibitors. Molecular Microbiology: Diagnostic Principles and Practice Presents the latest basic scientific theory underlying molecular diagnostics Offers tested and proven applications of molecular diagnostics for the diagnosis of infectious diseases, including point-of-care testing Illustrates and summarizes key concepts and techniques with detailed figures and tables Discusses emerging technologies, including the use of molecular typing methods for real-time tracking of infectious outbreaks and antibiotic resistance Advises on the latest quality control and quality assurance measures Explores the increasing opportunities and capabilities of information technology Molecular Microbiology: Diagnostic Principles and Practice is a textbook for molecular diagnostics courses that can also be used by anyone involved with diagnostic test selection and interpretation. It is also a useful reference for laboratories and as a continuing education resource for physicians.




Molecular Biology and Pathogenicity of Mycoplasmas


Book Description

was the result of the efforts of Robert Cleverdon. The rapidly developing discipline of molecular biology and the rapidly expanding knowledge of the PPLO were brought together at this meeting. In addition to the PPLO specialists, the conference invited Julius Marmur to compare PPLO DNA to DNA of other organisms; David Garfinkel, who was one of the first to develop computer models of metabolism; Cyrus Levinthal to talk about coding; and Henry Quastler to discuss information theory constraints on very small cells. The conference was an announcement of the role of PPLO in the fundamental understanding of molecular biology. Looking back 40-some years to the Connecticut meeting, it was a rather bold enterprise. The meeting was international and inter-disciplinary and began a series of important collaborations with influences resonating down to the present. If I may be allowed a personal remark, it was where I first met Shmuel Razin, who has been a leading figure in the emerging mycoplasma research and a good friend. This present volume is in some ways the fulfillment of the promise of that early meeting. It is an example of the collaborative work of scientists in building an understanding of fundamental aspects of biology.







Cancer Cell Culture


Book Description

With many recent advances, cancer cell culture research is more important than ever before. This timely edition of Cancer Cell Culture: Methods and Protocols covers the basic concepts of cancer cell biology and culture while expanding upon the recent shift in cell culture methods from the generation of new cell lines to the use of primary cells. There are methods to characterize and authenticate cell lines, to isolate and develop specific types of cancer cells, and to develop new cell line models. Functional assays are provided for the evaluation of clonogenicity, cell proliferation, apoptosis, adhesion, migration, invasion, senescence, angiogenesis, and cell cycle parameters. Other methods permit the modification of cells for transfection, drug resistance, immortalization, and transfer in vivo, the co-culture of different cell types, and the detection and treatment of contamination. In this new edition, specific emphasis is placed on safe working practice for both cells and laboratory researchers. These chapters contain the information critical to success – only by good practice and quality control will the results of cancer cell culture improve. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Cancer Cell Culture: Methods and Protocols serves as a practical guide for scientists of all backgrounds and aims to convey the appropriate sense of fascination associated with this research field.




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.