Biomethanization of the Organic Fraction of Municipal Solid Wastes


Book Description

Biomethanization of the Organic Fraction of Municipal Solid Wastes is a comprehensive introduction to both the fundamentals and the more practical aspects of the anaerobic digestion of organic solid wastes, particularly those derived from households, that is, the organic fraction of municipal solid wastes (OFMSW). It can be used as a textbook for specialized courses and also as a guide for practitioners. In the first part, the book covers the relevant aspects of anaerobic digestion (AD) of organic wastes. The fundamentals and kinetic aspects of AD are reviewed with particular emphasis on the aspects related to solid wastes. This introduction is necessary to have a comprehensive view of the AD process and to understand the practical principles as well as the origin of possible problems arising from the management of the process. Chapter 2 emphasizes the role of kinetics in designing the reactor, paying special attention to existing models, particularly the dynamic ones. Through this introduction, it is intended to facilitate the technology transfer from laboratory or pilot plant experiences to full-scale process, in order to implement improvements in current digesters. Laboratory methods are described for the analysis and optimization of reactor performance, such as methanogenic activity tests or experimental evaluation of the biodegradation kinetics of solid organic waste. The different reaction patterns applied to industrial reactors are outlined. Industrial reactors are classified in accordance with the system they use, pointing out advantages and limitations. Co-digestion, enabling the co-treatment of organic wastes of different origin in a more economically feasible way, is described in detail. Examples of co-digestion are given, with OFMSW as a base-substrate. Finally, full-scale co-digestion plants are discussed. Various types (mechanical, biological, physico-chemical) of pre-treatment to increase the biodegradability, and thus the yields of the process, are reviewed in detail. The use of the fermentation products of anaerobic digesters for biological nutrient removal processes in wastewater treatment plants is described. This constitutes an example of integrated waste management, a field in which both economic and technical advances can be achieved. Balances are given to justify the approach, and a full-scale case study is presented. The important topic of economics and the ecological advantages of the process are emphasized. The use of compost, the integration with composting technology, and advantages over other technologies are detailed in the framework of an environmental impact assessment of biowaste treatment. Finally, the anaerobic digestion of MSW in landfills is reviewed in detail, with emphasis on landfill process enhancement and strategies for its application.




Post Treatments of Anaerobically Treated Effluents


Book Description

The anaerobic process is considered to be a sustainable technology for organic waste treatment mainly due to its lower energy consumption and production of residual solids coupled with the prospect of energy recovery from the biogas generated. However, the anaerobic process cannot be seen as providing the ‘complete’ solution as its treated effluents would typically not meet the desired discharge limits in terms of residual carbon, nutrients and pathogens. This has given impetus to subsequent post treatment in order to meet the environmental legislations and protect the receiving water bodies and environment. This book discusses anaerobic treatment from the perspective of organic wastes and wastewaters (municipal and industrial) followed by various post-treatment options for anaerobic effluent polishing and resource recovery. Coverage will also be from the perspective of future trends and thoughts on anaerobic technologies being able to support meeting the increasingly stringent disposal standards. The resource recovery angle is particularly interesting as this can arguably help achieve the circular economy. It is intended the information can be used to identify appropriate solutions for anaerobic effluent treatment and possible alternative approaches to the commonly applied post-treatment techniques. The succeeding discussion is intended to lead on to identification of opportunities for further research and development. This book can be used as a standard reference book and textbook in universities for Master and Doctoral students. The academic community relevant to the subject, namely faculty, researchers, scientists, and practicing engineers, will find the book both informative and as a useful source of successful case studies.




Landfill aeration


Book Description




Sludge Treatment and Disposal


Book Description

Sludge Treatment and Disposal is the sixth volume in the series Biological Wastewater Treatment. The book covers in a clear and informative way the sludge characteristics, production, treatment (thickening, dewatering, stabilisation, pathogens removal) and disposal (land application for agricultural purposes, sanitary landfills, landfarming and other methods). Environmental and public health issues are also fully described. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Waste Stabilisation Ponds; Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilization Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors




Renewables-Based Technology


Book Description

Sustainability is a key driving force for industries in the chemical, food, packaging, agricultural and pharmaceutical sectors, and quantitative sustainability indicators are being incorporated into company reports. This is driving the uptake of renewable resources and the adoption of renewables. Renewables' can either be the substituted raw materials that are used in a given industry, (e.g. the use of biomass for fuel); the use and/or modification of a crop for use in a new industry (e.g. plant cellulose), or the reuse of a waste product (e.g. organic waste for energy production). This is the first book in the Wiley Renewable Resources series that brings together the range of sustainability assessment methods and their uses. Ensuing books in the series will look at individual renewable materials and applications.




Biogas Energy


Book Description

In recent years, the importance of biogas energy has risen manifold and has become universal. This is due to the realization that biogas capture and utilization has great potential in controlling global warming. By capturing biogas wherever it is formed, we not only tap a source of clean energy, but we also prevent the escape of methane to the atmosphere. Given that methane has 25 times greater global warming potential than CO2, methane capture through biogas energy in this manner can contribute substantially towards global warming control.




Biological Wastewater Treatment


Book Description

For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.




Integrated Solid Waste Management: A Lifecycle Inventory


Book Description

Life is often considered to be a journey. The lifecycle of waste can similarly be considered to be a journey from the cradle (when an item becomes valueless and, usually, is placed in the dustbin) to the grave (when value is restored by creating usable material or energy; or the waste is transformed into emissions to water or air, or into inert material placed in a landfill). This preface provides a route map for the journey the reader of this book will undertake. Who? Who are the intended readers of this book? Waste managers (whether in public service or private companies) will find a holistic approach for improving the environmental quality and the economic cost of managing waste. The book contains general principles based on cutting edge experience being developed across Europe. Detailed data and a computer model will enable operations managers to develop data-based improvements to their systems. Producers oj waste will be better able to understand how their actions can influence the operation of environmentally improved waste management systems. Designers oj products and packages will be better able to understand how their design criteria can improve the compatibility of their product or package with developing, environmentally improved waste management systems. Waste data specialists (whether in laboratories, consultancies or environ mental managers of waste facilities) will see how the scope, quantity and quality of their data can be improved to help their colleagues design more effective waste management systems.