State-of-the-Art of Millimeter-Wave Silicon Technology


Book Description

This book examines the critical differences between current and next-generation Si technologies (CMOS, BiCMOS and SiC) and technology platforms (e.g. system-on-chip) in mm-wave wireless applications. We provide a basic overview of the two technologies from a technical standpoint, followed by a review of the state-of-the-art of several key building blocks in wireless systems. The influences of system requirements on the choice of semiconductor technology are vital to understanding the merits of CMOS and BiCMOS devices – e.g., output power, battery life, adjacent channel interference, cost restrictions, and so forth. These requirements, in turn, affect component-level design and performance metrics of oscillators, mixers, power and low-noise amplifiers, as well as phase-locked loops and data converters. Finally, the book offers a peek into the next generation of wireless technologies such as THz -band systems and future 6G applications.




mm-Wave Silicon Technology


Book Description

This book compiles and presents the research results from the past five years in mm-wave Silicon circuits. This area has received a great deal of interest from the research community including several university and research groups. The book covers device modeling, circuit building blocks, phased array systems, and antennas and packaging. It focuses on the techniques that uniquely take advantage of the scale and integration offered by silicon based technologies.




mm-Wave Silicon Power Amplifiers and Transmitters


Book Description

Build high-performance, energy-efficient circuits with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems.




RF and mm-Wave Power Generation in Silicon


Book Description

RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: Power amplifier design fundamentals and methodologies Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon




RF and mm-Wave Power Generation in Silicon


Book Description

RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: - Power amplifier design fundamentals and methodologies - Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems - State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon - Extensive coverage from fundamentals to advanced design topics, focusing on various layers of abstraction: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers - New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances - Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations - Extensive coverage of mm-Wave power-generation techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures - Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy - Contributions from the world-class experts from both academia and industry




Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology


Book Description

The book presents the analysis and design of integrated automotive radar receivers in Silicon-Germanium technology, for use in complex multi-channel radar transceiver front-ends in the 77GHz frequency band. The main emphasis of the work is the realization of high-linearity and low-power modular receiver channels as well as the investigation of millimeter-wave integrated test concepts for the receiver front-end.




Millimeter-Wave Power Amplifiers


Book Description

This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.




Electromagnetics and Network Theory and their Microwave Technology Applications


Book Description

This volume provides a discussion of the challenges and perspectives of electromagnetics and network theory and their microwave applications in all aspects. It collects the most interesting contribution of the symposium dedicated to Professor Peter Russer held in October 2009 in Munich.




Circuits and Applications Using Silicon Heterostructure Devices


Book Description

No matter how you slice it, semiconductor devices power the communications revolution. Skeptical? Imagine for a moment that you could flip a switch and instantly remove all the integrated circuits from planet Earth. A moment’s reflection would convince you that there is not a single field of human endeavor that would not come to a grinding halt, be it commerce, agriculture, education, medicine, or entertainment. Life, as we have come to expect it, would simply cease to exist. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume covers SiGe circuit applications in the real world. Edited by John D. Cressler, with contributions from leading experts in the field, this book presents a broad overview of the merits of SiGe for emerging communications systems. Coverage spans new techniques for improved LNA design, RF to millimeter-wave IC design, SiGe MMICs, SiGe Millimeter-Wave ICs, and wireless building blocks using SiGe HBTs. The book provides a glimpse into the future, as envisioned by industry leaders.




Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications


Book Description

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.