The Early Universe and the Cosmic Microwave Background: Theory and Observations


Book Description

The goal of the Daniel Chalonge School on Astrofundamental Physics is to contribute to a theory of the universe (and particularly of the early universe) up to the marks, and at the scientific height of, the unprecedented accuracy, existent and expected, in the observational data. The impressive development of modern cosmology during the last decades is to a large extent due to its unification with elementary particle physics and quantum field theory. The cross-section between these fields has been increasing setting up Astrofundamental Physics. The early universe is an exceptional (theoretical and experimental) laboratory in this new discipline. This NATO Advanced Study Institute provided an up dated understanding, from a fundamental physics and deep point of view, of the progress and key issues in the early universe and the cosmic microwave background: theory and observations. The genuine interplay with large scale structure formation and dark matter problem were discussed. The central focus was placed on the cosmic microwave background. Emphasis was given to the precise inter-relation between fundamental physics and cosmology in these problems, both at the theoretical and experimental/observational levels, within a deep and well defined programme which provided in addition, a careful interdisciplinarity. Special sessions were devoted to high energy cosmic rays, neutrinos in astrophysics, and high energy astrophysics. Deep understanding, clarification, synthesis, careful interdisciplinarity within a fundamental physics framework, were the main goals of the course.




Non-linear Data Analysis on the Sphere


Book Description

This work deals with the search for signatures of non-Gaussianities in the cosmic microwave background (CMB). Probing Gaussianity in the CMB addresses one of the key questions in modern cosmology because it allows us to discriminate between different models of inflation, and thus concerns a fundamental part of the standard cosmological model. The basic goal here is to adapt complementary methods stemming from the field of complexity science to CMB data analysis. Two key concepts, namely the method of surrogates and estimators for local scaling properties, are applied to CMB data analysis. All results show strong non-Gaussianities and pronounced asymmetries. The consistency of the full sky and cut sky results shows convincingly for the first time that the influence of the Galactic plane is not responsible for these deviations from Gaussianity and isotropy. The findings seriously call into question predictions of isotropic cosmologies based on the widely accepted single field slow roll inflation model.







The Cosmic Microwave Background


Book Description

The series of texts composing this book is based on the lectures presented during the II José Plínio Baptista School of Cosmology, held in Pedra Azul (Espírito Santo, Brazil) between 9 and 14 March 2014. This II JBPCosmo has been entirely devoted to the problem of understanding theoretical and observational aspects of Cosmic Background Radiation (CMB).The CMB is one of the most important phenomena in Physics and a fundamental probe of our Universe when it was only 400,000 years old. It is an extraordinary laboratory where we can learn from particle physics to cosmology; its discovery in 1965 has been a landmark event in the history of physics.The observations of the anisotropy of the cosmic microwave background radiation through the satellites COBE, WMAP and Planck provided a huge amount of data which are being analyzed in order to discover important informations regarding the composition of our universe and the process of structure formation.




The Physics of the Cosmic Microwave Background


Book Description

Spectacular observational breakthroughs, particularly by the WMAP satellite, have led to a new epoch of CMB science long after its original discovery. Taking a physical approach, the authors of this volume probe the problem of the 'darkness' of the Universe: the origin and evolution of dark energy and matter in the cosmos. Starting with the observational background of modern cosmology, they provide an accessible review of this fascinating yet complex subject. Topics discussed include the kinetics of the electromagnetic radiation in the Universe, the ionization history of cosmic plamas, the origin of primordial perturbations in light of the inflation paradigm, and the formation of anisotropy and polarization of the CMB. This fascinating review will be valuable to advanced students and researchers in cosmology.




Cmb Anisotropies Two Years After Cobe:observations, Theory And The Future - Proceedings Of The 1994 Cwru Workshop


Book Description

This volume records the latest experimental and theoretical results on anisotropies in the cosmic microwave background (CMB). The book begins with a survey article describing the main observational issues, and in which the current COBE DMR whole-sky anisotropy data — now dramatically visible above the noise — are displayed. Results and analyses by the MAX, Python, MSAM, White Dish and South Pole groups, amongst others, are included. The theoretical implications of these results for cosmological scenarios are explored. The workshop also included a discussion of how the interplay between theory and experiment can best be enhanced.




Data Analysis in Cosmology


Book Description

The amount of cosmological data has dramatically increased in the past decades due to an unprecedented development of telescopes, detectors and satellites. Efficiently handling and analysing new data of the order of terabytes per day requires not only computer power to be processed but also the development of sophisticated algorithms and pipelines. Aiming at students and researchers the lecture notes in this volume explain in pedagogical manner the best techniques used to extract information from cosmological data, as well as reliable methods that should help us improve our view of the universe.




The Investigation, Development and Testing of Novel Methods for the Statistical Characterisation of Cosmic Microwave Background Data, Aimed at Isolating and Quantifying Departures from the Standard Cosmological Model, And, Large Scale Galaxy Clustering Data, Aimed at Refining Estimates of Key Parameters Required for the Advancement of Galaxy Formation Theory


Book Description

The thesis concerns the statistical characterisation of large scale properties of the Universe. Two complementary data sets are considered: all-sky maps of the cosmic microwave background (CMB) temperature fluctuations from the Wilkinson Microwave Anisotropy Probe (WMAP); and large area maps of galaxies detected through the sub-millimetre electromagnetic emission using the Herschel Space Observatory. The standard model predicts the distribution of temperature fluctuations in the CMB to be Gaussian, homogeneous and isotropic. Since they could deviate from the standard model in many different ways, a number of complementary descriptors are required. All-sky maps of the CMB are often decomposed into spherical harmonic modes. Any modes aligned with the Galactic plane are particularly interesting because anomalous behaviour in them could indicate errors in the subtraction of Galactic foreground. Here a simple statistical analysis of these modes is tested and shown to be a useful diagnostic of possible foreground subtraction systematics. In addition, two methods for characterizing large-scale anisotropy in all sky CMB maps are discussed. They are tested against simulated anisotropic cosmologies and both show promise as effective diagnostic tools. The second part concerns analytical models of the correlation function for the distribution of galaxies. The 'Halo' model is comprehensive, but it is also rather complex. We promote a simpler alternative based on fitting functions found from numerical simulations. Both models compare well to the observational data, showing that the fitting function method can be a quick and easy option. Also, we show that a 'key' Halo model assumption, intra-halo correlations, is not required to produce a good fit. We summarise by discussing the different approximations used in the current galaxy clustering models, the limits of the currently available data and future areas of development.