Statistical Analysis of Environmental Space-Time Processes


Book Description

This book provides a broad introduction to the subject of environmental space-time processes, addressing the role of uncertainty. It covers a spectrum of technical matters from measurement to environmental epidemiology to risk assessment. It showcases non-stationary vector-valued processes, while treating stationarity as a special case. In particular, with members of their research group the authors developed within a hierarchical Bayesian framework, the new statistical approaches presented in the book for analyzing, modeling, and monitoring environmental spatio-temporal processes. Furthermore they indicate new directions for development.




Statistical Methods for Environmental Pollution Monitoring


Book Description

This book discusses a broad range of statistical design and analysis methods that are particularly well suited to pollution data. It explains key statistical techniques in easy-to-comprehend terms and uses practical examples, exercises, and case studies to illustrate procedures. Dr. Gilbert begins by discussing a space-time framework for sampling pollutants. He then shows how to use statistical sample survey methods to estimate average and total amounts of pollutants in the environment, and how to determine the number of field samples and measurements to collect for this purpose. Then a broad range of statistical analysis methods are described and illustrated. These include: * determining the number of samples needed to find hot spots * analyzing pollution data that are lognormally distributed * testing for trends over time or space * estimating the magnitude of trends * comparing pollution data from two or more populations New areas discussed in this sourcebook include statistical techniques for data that are correlated, reported as less than the measurement detection limit, or obtained from field-composited samples. Nonparametric statistical analysis methods are emphasized since parametric procedures are often not appropriate for pollution data. This book also provides an illustrated comprehensive computer code for nonparametric trend detection and estimation analyses as well as nineteen statistical tables to permit easy application of the discussed statistical techniques. In addition, many publications are cited that deal with the design of pollution studies and the statistical analysis of pollution data. This sourcebook will be a useful tool for applied statisticians, ecologists, radioecologists, hydrologists, biologists, environmental engineers, and other professionals who deal with the collection, analysis, and interpretation of pollution in air, water, and soil.




Statistical Methods for Trend Detection and Analysis in the Environmental Sciences


Book Description

The need to understand and quantify change is fundamental throughout the environmental sciences. This might involve describing past variation, understanding the mechanisms underlying observed changes, making projections of possible future change, or monitoring the effect of intervening in some environmental system. This book provides an overview of modern statistical techniques that may be relevant in problems of this nature. Practitioners studying environmental change will be familiar with many classical statistical procedures for the detection and estimation of trends. However, the ever increasing capacity to collect and process vast amounts of environmental information has led to growing awareness that such procedures are limited in the insights that they can deliver. At the same time, significant developments in statistical methodology have often been widely dispersed in the statistical literature and have therefore received limited exposure in the environmental science community. This book aims to provide a thorough but accessible review of these developments. It is split into two parts: the first provides an introduction to this area and the second part presents a collection of case studies illustrating the practical application of modern statistical approaches to the analysis of trends in real studies. Key Features: Presents a thorough introduction to the practical application and methodology of trend analysis in environmental science. Explores non-parametric estimation and testing as well as parametric techniques. Methods are illustrated using case studies from a variety of environmental application areas. Looks at trends in all aspects of a process including mean, percentiles and extremes. Supported by an accompanying website featuring datasets and R code. The book is designed to be accessible to readers with some basic statistical training, but also contains sufficient detail to serve as a reference for practising statisticians. It will therefore be of use to postgraduate students and researchers both in the environmental sciences and in statistics.




Spatio-Temporal Methods in Environmental Epidemiology


Book Description

Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and




Quantitative Analysis and Modeling of Earth and Environmental Data


Book Description

Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations introduces the notion of chronotopologic data analysis that offers a systematic, quantitative analysis of multi-sourced data and provides information about the spatial distribution and temporal dynamics of natural attributes (physical, biological, health, social). It includes models and techniques for handling data that may vary by space and/or time, and aims to improve understanding of the physical laws of change underlying the available numerical datasets, while taking into consideration the in-situ uncertainties and relevant measurement errors (conceptual, technical, computational). It considers the synthesis of scientific theory-based methods (stochastic modeling, modern geostatistics) and data-driven techniques (machine learning, artificial neural networks) so that their individual strengths are combined by acting symbiotically and complementing each other. The notions and methods presented in Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations cover a wide range of data in various forms and sources, including hard measurements, soft observations, secondary information and auxiliary variables (ground-level measurements, satellite observations, scientific instruments and records, protocols and surveys, empirical models and charts). Including real-world practical applications as well as practice exercises, this book is a comprehensive step-by-step tutorial of theory-based and data-driven techniques that will help students and researchers master data analysis and modeling in earth and environmental sciences (including environmental health and human exposure applications). Explores the analysis and processing of chronotopologic (i.e., space-time and spacetime) data that varies spatially and/or temporally, which is the case with the majority of data in scientific and engineering disciplines Studies the synthesis of scientific theory and empirical evidence (in its various forms) that offers a mathematically rigorous and physically meaningful assessment of real-world phenomena Covers a wide range of data describing a variety of attributes characterizing physical phenomena and systems including earth, ocean and atmospheric variables, environmental and ecological parameters, population health states, disease indicators, and social and economic characteristics Includes case studies and practice exercises at the end of each chapter for both real-world applications and deeper understanding of the concepts presented




Quantitative Methods for Current Environmental Issues


Book Description

It is increasingly clear that good quantitative work in the environmental sciences must be genuinely interdisciplinary. This volume, the proceedings of the first combined TIES/SPRUCE conference held at the University of Sheffield in September 2000, well demonstrates the truth of this assertion, highlighting the successful use of both statistics and mathematics in important practical problems. It brings together distinguished scientists and engineers to present the most up-to-date and practical methods for quantitative measurement and prediction and is organised around four themes: - spatial and temporal models and methods; - environmental sampling and standards; - atmosphere and ocean; - risk and uncertainty. Quantitative Methods for Current Environmental Issues is an invaluable resource for statisticians, applied mathematicians and researchers working on environmental problems, and for those in government agencies and research institutes involved in the analysis of environmental issues.




Statistical Methods for Environmental Epidemiology with R


Book Description

As an area of statistical application, environmental epidemiology and more speci cally, the estimation of health risk associated with the exposure to - vironmental agents, has led to the development of several statistical methods and software that can then be applied to other scienti c areas. The stat- tical analyses aimed at addressing questions in environmental epidemiology have the following characteristics. Often the signal-to-noise ratio in the data is low and the targets of inference are inherently small risks. These constraints typically lead to the development and use of more sophisticated (and pot- tially less transparent) statistical models and the integration of large hi- dimensional databases. New technologies and the widespread availability of powerful computing are also adding to the complexities of scienti c inves- gation by allowing researchers to t large numbers of models and search over many sets of variables. As the number of variables measured increases, so do the degrees of freedom for in uencing the association between a risk factor and an outcome of interest. We have written this book, in part, to describe our experiences developing and applying statistical methods for the estimation for air pollution health e ects. Our experience has convinced us that the application of modern s- tistical methodology in a reproducible manner can bring to bear subst- tial bene ts to policy-makers and scientists in this area. We believe that the methods described in this book are applicable to other areas of environmental epidemiology, particularly those areas involving spatial{temporal exposures.




Hierarchical Modelling for the Environmental Sciences


Book Description

New statistical tools are changing the ways in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirement for a clear exposition of the methodology through to application for a range of environmental challenges.




Statistical Methods for Spatial Planning and Monitoring


Book Description

The book aims to investigate methods and techniques for spatial statistical analysis suitable to model spatial information in support of decision systems. Over the last few years there has been a considerable interest in these tools and in the role they can play in spatial planning and environmental modelling. One of the earliest and most famous definition of spatial planning was “a geographical expression to the economic, social, cultural and ecological policies of society”: borrowing from this point of view, this text shows how an interdisciplinary approach is an effective way to an harmonious integration of national policies with regional and local analysis. A wide range of spatial models and techniques is, also, covered: spatial data mining, point processes analysis, nearest neighbor statistics and cluster detection, Fuzzy Regression model and local indicators of spatial association; all of these tools provide the policy-maker with a valuable support to policy development.




Environmental Statistics


Book Description

In modern society, we are ever more aware of the environmental issues we face, whether these relate to global warming, depletion of rivers and oceans, despoliation of forests, pollution of land, poor air quality, environmental health issues, etc. At the most fundamental level it is necessary to monitor what is happening in the environment – collecting data to describe the changing scene. More importantly, it is crucial to formally describe the environment with sound and validated models, and to analyse and interpret the data we obtain in order to take action. Environmental Statistics provides a broad overview of the statistical methodology used in the study of the environment, written in an accessible style by a leading authority on the subject. It serves as both a textbook for students of environmental statistics, as well as a comprehensive source of reference for anyone working in statistical investigation of environmental issues. Provides broad coverage of the methodology used in the statistical investigation of environmental issues. Covers a wide range of key topics, including sampling, methods for extreme data, outliers and robustness, relationship models and methods, time series, spatial analysis, and environmental standards. Includes many detailed practical and worked examples that illustrate the applications of statistical methods in environmental issues. Authored by a leading authority on environmental statistics.