Statistical Analysis of Panel Count Data


Book Description

Panel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.




Regression Analysis of Count Data


Book Description

This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.




Panel Data Econometrics


Book Description

Panel Data Econometrics: Theory introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts




Econometric Analysis of Cross Section and Panel Data, second edition


Book Description

The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.




New Developments in Statistical Modeling, Inference and Application


Book Description

The papers in this volume represent the most timely and advanced contributions to the 2014 Joint Applied Statistics Symposium of the International Chinese Statistical Association (ICSA) and the Korean International Statistical Society (KISS), held in Portland, Oregon. The contributions cover new developments in statistical modeling and clinical research: including model development, model checking, and innovative clinical trial design and analysis. Each paper was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe. It offered 3 keynote speeches, 7 short courses, 76 parallel scientific sessions, student paper sessions, and social events.




Panel Data Econometrics with R


Book Description

Panel Data Econometrics with R provides a tutorial for using R in the field of panel data econometrics. Illustrated throughout with examples in econometrics, political science, agriculture and epidemiology, this book presents classic methodology and applications as well as more advanced topics and recent developments in this field including error component models, spatial panels and dynamic models. They have developed the software programming in R and host replicable material on the book’s accompanying website.




The Statistical Analysis of Interval-censored Failure Time Data


Book Description

This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.




Handbook of Statistical Methods for Randomized Controlled Trials


Book Description

Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials. Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.




Methods and Applications of Statistics in the Life and Health Sciences


Book Description

Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume outlines the statistical tools for successfully working with modern life and health sciences research Data collection holds an essential part in dictating the future of health sciences and public health, as the compilation of statistics allows researchers and medical practitioners to monitor trends in health status, identify health problems, and evaluate the impact of health policies and programs. Methods and Applications of Statistics in the Life and Health Sciences serves as a single, one-of-a-kind resource on the wide range of statistical methods, techniques, and applications that are applied in modern life and health sciences in research. Specially designed to present encyclopedic content in an accessible and self-contained format, this book outlines thorough coverage of the underlying theory and standard applications to research in related disciplines such as biology, epidemiology, clinical trials, and public health. Uniquely combining established literature with cutting-edge research, this book contains classical works and more than twenty-five new articles and completely revised contributions from the acclaimed Encyclopedia of Statistical Sciences, Second Edition. The result is a compilation of more than eighty articles that explores classic methodology and new topics, including: Sequential methods in biomedical research Statistical measures of human quality of life Change-point methods in genetics Sample size determination for clinical trials Mixed-effects regression models for predicting pre-clinical disease Probabilistic and statistical models for conception Statistical methods are explored and applied to population growth, disease detection and treatment, genetic and genomic research, drug development, clinical trials, screening and prevention, and the assessment of rehabilitation, recovery, and quality of life. These topics are explored in contributions written by more than 100 leading academics, researchers, and practitioners who utilize various statistical practices, such as election bias, survival analysis, missing data techniques, and cluster analysis for handling the wide array of modern issues in the life and health sciences. With its combination of traditional methodology and newly developed research, Methods and Applications of Statistics in the Life and Health Sciences has everything students, academics, and researchers in the life and health sciences need to build and apply their knowledge of statistical methods and applications.




The Oxford Handbook of Panel Data


Book Description

The Oxford Handbook of Panel Data examines new developments in the theory and applications of panel data. It includes basic topics like non-stationary panels, co-integration in panels, multifactor panel models, panel unit roots, measurement error in panels, incidental parameters and dynamic panels, spatial panels, nonparametric panel data, random coefficients, treatment effects, sample selection, count panel data, limited dependent variable panel models, unbalanced panel models with interactive effects and influential observations in panel data. Contributors to the Handbook explore applications of panel data to a wide range of topics in economics, including health, labor, marketing, trade, productivity, and macro applications in panels. This Handbook is an informative and comprehensive guide for both those who are relatively new to the field and for those wishing to extend their knowledge to the frontier. It is a trusted and definitive source on panel data, having been edited by Professor Badi Baltagi-widely recognized as one of the foremost econometricians in the area of panel data econometrics. Professor Baltagi has successfully recruited an all-star cast of experts for each of the well-chosen topics in the Handbook.