Statistical Design, Monitoring, and Analysis of Clinical Trials


Book Description

Statistical Design, Monitoring, and Analysis of Clinical Trials, Second Edition concentrates on the biostatistics component of clinical trials. This new edition is updated throughout and includes five new chapters. Developed from the authors’ courses taught to public health and medical students, residents, and fellows during the past 20 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, phase 2/3 seamless design and trials with predictive biomarkers, exploit multiple testing procedures, and explain the concept of estimand, intercurrent events, and different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students and practitioners a multidisciplinary understanding of the concepts and techniques involved in designing, monitoring, and analyzing various types of trials. The book’s balanced set of homework assignments and in-class exercises are appropriate for students and researchers in (bio)statistics, epidemiology, medicine, pharmacy, and public health.




Statistical Aspects Of The Design And Analysis Of Clinical Trials (Revised Edition)


Book Description

Fully updated, this revised edition describes the statistical aspects of both the design and analysis of trials, with particular emphasis on the more recent methods of analysis.About 8000 clinical trials are undertaken annually in all areas of medicine, from the treatment of acne to the prevention of cancer. Correct interpretation of the data from such trials depends largely on adequate design and on performing the appropriate statistical analyses. This book provides a useful guide to medical statisticians and others faced with the often difficult problems of designing and analysing clinical trials./a




Design and Analysis of Clinical Trials


Book Description

Praise for the First Edition of Design and Analysis of Clinical Trials "An excellent book, providing a discussion of the clinical trial process from designing the study through analyzing the data, and to regulatory requirement . . . could easily be used as a classroom text to understand the process in the new drug development area." –Statistical Methods in Medicine A complete and balanced presentation now revised, updated, and expanded As the field of research possibilities expands, the need for a working understanding of how to carry out clinical trials only increases. New developments in the theory and practice of clinical research include a growing body of literature on the subject, new technologies and methodologies, and new guidelines from the International Conference on Harmonization (ICH). Design and Analysis of Clinical Trials, Second Edition provides both a comprehensive, unified presentation of principles and methodologies for various clinical trials, and a well-balanced summary of current regulatory requirements. This unique resource bridges the gap between clinical and statistical disciplines, covering both fields in a lucid and accessible manner. Thoroughly updated from its first edition, the Second Edition of Design and Analysis of Clinical Trials features new topics such as: Clinical trials and regulations, especially those of the ICH Clinical significance, reproducibility, and generalizability Goals of clinical trials and target population New study designs and trial types Sample size determination on equivalence and noninferiority trials, as well as comparing variabilities Also, three entirely new chapters cover: Designs for cancer clinical trials Preparation and implementation of a clinical protocol Data management of a clinical trial Written with the practitioner in mind, the presentation assumes only a minimal mathematical and statistical background for its reader. Instead, the writing emphasizes real-life examples and illustrations from clinical case studies, as well as numerous references-280 of them new to the Second Edition-to the literature. Design and Analysis of Clinical Trials, Second Edition will benefit academic, pharmaceutical, medical, and regulatory scientists/researchers, statisticians, and graduate-level students in these areas by serving as a useful, thorough reference source for clinical research.




Small Clinical Trials


Book Description

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.




Sequential Experimentation in Clinical Trials


Book Description

Sequential Experimentation in Clinical Trials: Design and Analysis is developed from decades of work in research groups, statistical pedagogy, and workshop participation. Different parts of the book can be used for short courses on clinical trials, translational medical research, and sequential experimentation. The authors have successfully used the book to teach innovative clinical trial designs and statistical methods for Statistics Ph.D. students at Stanford University. There are additional online supplements for the book that include chapter-specific exercises and information. Sequential Experimentation in Clinical Trials: Design and Analysis covers the much broader subject of sequential experimentation that includes group sequential and adaptive designs of Phase II and III clinical trials, which have attracted much attention in the past three decades. In particular, the broad scope of design and analysis problems in sequential experimentation clearly requires a wide range of statistical methods and models from nonlinear regression analysis, experimental design, dynamic programming, survival analysis, resampling, and likelihood and Bayesian inference. The background material in these building blocks is summarized in Chapter 2 and Chapter 3 and certain sections in Chapter 6 and Chapter 7. Besides group sequential tests and adaptive designs, the book also introduces sequential change-point detection methods in Chapter 5 in connection with pharmacovigilance and public health surveillance. Together with dynamic programming and approximate dynamic programming in Chapter 3, the book therefore covers all basic topics for a graduate course in sequential analysis designs.




Design and Analysis of Quality of Life Studies in Clinical Trials


Book Description

More and more frequently, clinical trials include the evaluation of Health-Related Quality of Life (HRQoL), yet many investigators remain unaware of the unique measurement and analysis issues associated with the assessment of HRQoL. At the end of a study, clinicians and statisticians often face challenging and sometimes insurmountable analytic problems. Design and Analysis of Quality of Life Studies in Clinical Trials details these issues and presents a range of solutions. Written from the author's extensive experience in the field, it focuses on the very specific features of QoL data: its longitudinal nature, multidimensionality, and the problem of missing data. The author uses three real clinical trials throughout her discussions to illustrate practical implementation of the strategies and analytic methods presented. As Quality of Life becomes an increasingly important aspect of clinical trials, it becomes essential for clinicians, statisticians, and designers of these studies to understand and meet the challenges this kind of data present. In this book, SAS and S-PLUS programs, checklists, numerous figures, and a clear, concise presentation combine to provide readers with the tools and skills they need to successfully design, conduct, analyze, and report their own studies.




Introduction to Statistical Methods for Clinical Trials


Book Description

Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials.




The Prevention and Treatment of Missing Data in Clinical Trials


Book Description

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.




Statistical Thinking in Clinical Trials


Book Description

Statistical Thinking in Clinical Trials combines a relatively small number of key statistical principles and several instructive clinical trials to gently guide the reader through the statistical thinking needed in clinical trials. Randomization is the cornerstone of clinical trials and randomization-based inference is the cornerstone of this book. Read this book to learn the elegance and simplicity of re-randomization tests as the basis for statistical inference (the analyze as you randomize principle) and see how re-randomization tests can save a trial that required an unplanned, mid-course design change. Other principles enable the reader to quickly and confidently check calculations without relying on computer programs. The `EZ’ principle says that a single sample size formula can be applied to a multitude of statistical tests. The `O minus E except after V’ principle provides a simple estimator of the log odds ratio that is ideally suited for stratified analysis with a binary outcome. The same principle can be used to estimate the log hazard ratio and facilitate stratified analysis in a survival setting. Learn these and other simple techniques that will make you an invaluable clinical trial statistician.




Recent Advances in Clinical Trial Design and Analysis


Book Description

Clinical trials have two purposes -- to treat the patients in the trial, and to obtain information which increases our understanding of the disease and especially how patients respond to treatment. Statistical design provides a means to achieve both these aims, while statistical data analysis provides methods for extracting useful information from the trial data. Recent advances in statistical computing have enabled statisticians to implement very rapidly a broad array of methods which previously were either impractical or impossible. Biostatisticians are now able to provide much greater support to medical researchers working in both clinical and laboratory settings. As our collective toolkit of techniques for analyzing data has grown, it has become increasingly difficult for biostatisticians to keep up with all the developments in our own field. Recent Advances in Clinical Trial Design and Analysis brings together biostatisticians doing cutting-edge research and explains some of the more recent developments in biostatistics to clinicians and scientists who work in clinical trials.