Statistical Design and Analysis of Industrial Experiments
Author : Ghosh
Publisher : CRC Press
Page : 562 pages
File Size : 10,29 MB
Release : 1990-05-25
Category : Mathematics
ISBN : 9780824782511
Author : Ghosh
Publisher : CRC Press
Page : 562 pages
File Size : 10,29 MB
Release : 1990-05-25
Category : Mathematics
ISBN : 9780824782511
Author : Sammy Shina
Publisher : Springer
Page : 0 pages
File Size : 17,28 MB
Release : 2023-01-05
Category : Technology & Engineering
ISBN : 9783030862695
This textbook provides the tools, techniques, and industry examples needed for the successful implementation of design of experiments (DoE) in engineering and manufacturing applications. It contains a high-level engineering analysis of key issues in the design, development, and successful analysis of industrial DoE, focusing on the design aspect of the experiment and then on interpreting the results. Statistical analysis is shown without formula derivation, and readers are directed as to the meaning of each term in the statistical analysis. Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization is designed for graduate-level DoE, engineering design, and general statistical courses, as well as professional education and certification classes. Practicing engineers and managers working in multidisciplinary product development will find it to be an invaluable reference that provides all the information needed to accomplish a successful DoE.
Author : Angela Dean
Publisher : CRC Press
Page : 946 pages
File Size : 47,35 MB
Release : 2015-06-26
Category : Mathematics
ISBN : 146650434X
This carefully edited collection synthesizes the state of the art in the theory and applications of designed experiments and their analyses. It provides a detailed overview of the tools required for the optimal design of experiments and their analyses. The handbook covers many recent advances in the field, including designs for nonlinear models and algorithms applicable to a wide variety of design problems. It also explores the extensive use of experimental designs in marketing, the pharmaceutical industry, engineering and other areas.
Author : Jiju Antony
Publisher : Elsevier
Page : 221 pages
File Size : 43,73 MB
Release : 2014-02-22
Category : Technology & Engineering
ISBN : 0080994199
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Author : Peter W. M. John
Publisher : SIAM
Page : 378 pages
File Size : 47,33 MB
Release : 1998-01-01
Category : Mathematics
ISBN : 0898714273
An invaluable reference on the design of experiments. Includes hard-to-find information on change-over designs and analysis of covariance.
Author : Ajit C. Tamhane
Publisher : John Wiley & Sons
Page : 724 pages
File Size : 13,2 MB
Release : 2012-09-12
Category : Science
ISBN : 1118491432
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
Author : John Lawson
Publisher : CRC Press
Page : 629 pages
File Size : 26,40 MB
Release : 2014-12-17
Category : Mathematics
ISBN : 1498728480
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,
Author : Gary W. Oehlert
Publisher : W. H. Freeman
Page : 600 pages
File Size : 37,51 MB
Release : 2000-01-19
Category : Mathematics
ISBN : 9780716735106
Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.
Author : C. F. Jeff Wu
Publisher : John Wiley & Sons
Page : 562 pages
File Size : 18,38 MB
Release : 2011-09-20
Category : Mathematics
ISBN : 1118211537
Praise for the First Edition: "If you . . . want an up-to-date, definitive reference written by authors who have contributed much to this field, then this book is an essential addition to your library." —Journal of the American Statistical Association Fully updated to reflect the major progress in the use of statistically designed experiments for product and process improvement, Experiments, Second Edition introduces some of the newest discoveries—and sheds further light on existing ones—on the design and analysis of experiments and their applications in system optimization, robustness, and treatment comparison. Maintaining the same easy-to-follow style as the previous edition while also including modern updates, this book continues to present a new and integrated system of experimental design and analysis that can be applied across various fields of research including engineering, medicine, and the physical sciences. The authors modernize accepted methodologies while refining many cutting-edge topics including robust parameter design, reliability improvement, analysis of non-normal data, analysis of experiments with complex aliasing, multilevel designs, minimum aberration designs, and orthogonal arrays. Along with a new chapter that focuses on regression analysis, the Second Edition features expanded and new coverage of additional topics, including: Expected mean squares and sample size determination One-way and two-way ANOVA with random effects Split-plot designs ANOVA treatment of factorial effects Response surface modeling for related factors Drawing on examples from their combined years of working with industrial clients, the authors present many cutting-edge topics in a single, easily accessible source. Extensive case studies, including goals, data, and experimental designs, are also included, and the book's data sets can be found on a related FTP site, along with additional supplemental material. Chapter summaries provide a succinct outline of discussed methods, and extensive appendices direct readers to resources for further study. Experiments, Second Edition is an excellent book for design of experiments courses at the upper-undergraduate and graduate levels. It is also a valuable resource for practicing engineers and statisticians.
Author : Thomas J. Santner
Publisher : Springer
Page : 446 pages
File Size : 40,20 MB
Release : 2019-01-08
Category : Mathematics
ISBN : 1493988476
This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners