Statistical Image Processing and Multidimensional Modeling


Book Description

Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.







Multidimensional Signal and Color Image Processing Using Lattices


Book Description

An Innovative Approach to Multidimensional Signals and Systems Theory for Image and Video Processing In this volume, Eric Dubois further develops the theory of multi-D signal processing wherein input and output are vector-value signals. With this framework, he introduces the reader to crucial concepts in signal processing such as continuous- and discrete-domain signals and systems, discrete-domain periodic signals, sampling and reconstruction, light and color, random field models, image representation and more. While most treatments use normalized representations for non-rectangular sampling, this approach obscures much of the geometrical and scale information of the signal. In contrast, Dr. Dubois uses actual units of space-time and frequency. Basis-independent representations appear as much as possible, and the basis is introduced where needed to perform calculations or implementations. Thus, lattice theory is developed from the beginning and rectangular sampling is treated as a special case. This is especially significant in the treatment of color and color image processing and for discrete transform representations based on symmetry groups, including fast computational algorithms. Other features include: An entire chapter on lattices, giving the reader a thorough grounding in the use of lattices in signal processing Extensive treatment of lattices as used to describe discrete-domain signals and signal periodicities Chapters on sampling and reconstruction, random field models, symmetry invariant signals and systems and multidimensional Fourier transformation properties Supplemented throughout with MATLAB examples and accompanying downloadable source code Graduate and doctoral students as well as senior undergraduates and professionals working in signal processing or video/image processing and imaging will appreciate this fresh approach to multidimensional signals and systems theory, both as a thorough introduction to the subject and as inspiration for future research.




Frontiers in Statistical Quality Control 13


Book Description

This contributed book focuses on major aspects of statistical quality control, shares insights into important new developments in the field, and adapts established statistical quality control methods for use in e.g. big data, network analysis and medical applications. The content is divided into two parts, the first of which mainly addresses statistical process control, also known as statistical process monitoring. In turn, the second part explores selected topics in statistical quality control, including measurement uncertainty analysis and data quality. The peer-reviewed contributions gathered here were originally presented at the 13th International Workshop on Intelligent Statistical Quality Control, ISQC 2019, held in Hong Kong on August 12-14, 2019. Taken together, they bridge the gap between theory and practice, making the book of interest to both practitioners and researchers in the field of statistical quality control.




Multi-Fractal Traffic and Anomaly Detection in Computer Communications


Book Description

This book provides a comprehensive theory of mono- and multi-fractal traffic, including the basics of long-range dependent time series and 1/f noise, ergodicity and predictability of traffic, traffic modeling and simulation, stationarity tests of traffic, traffic measurement and the anomaly detection of traffic in communications networks. Proving that mono-fractal LRD time series is ergodic, the book exhibits that LRD traffic is stationary. The author shows that the stationarity of multi-fractal traffic relies on observation time scales, and proposes multi-fractional generalized Cauchy processes and modified multi-fractional Gaussian noise. The book also establishes a set of guidelines for determining the record length of traffic in measurement. Moreover, it presents an approach of traffic simulation, as well as the anomaly detection of traffic under distributed-denial-of service attacks. Scholars and graduates studying network traffic in computer science will find the book beneficial.




Mathematical Modeling and Simulation of Systems


Book Description

This book contains works on mathematical and simulation modeling of processes in various domains: ecology and geographic information systems, IT, industry, and project management. The development of complex multicomponent systems requires an increase in accuracy, efficiency, and adequacy while reducing the cost of their creation. The studies presented in the book are useful to specialists who involved in the development of real events models-analog, management and decision-making models, production models, and software products. Scientists can get acquainted with the latest research in various decisions proposed by leading scholars and identify promising directions for solving complex scientific and practical problems. The chapters of this book contain the contributions presented on the 16th International Scientific-practical Conference, MODS, June 28–July 01, 2021, Chernihiv, Ukraine.




Image Analysis and Recognition


Book Description

The two-volume set LNCS 6753/6754 constitutes the refereed proceedings of the 8th International Conference on Image and Recognition, ICIAR 2011, held in Burnaby, Canada, in June 2011. The 84 revised full papers presented were carefully reviewed and selected from 147 submissions. The papers are organized in topical sections on image and video processing; feature extraction and pattern recognition; computer vision; color, texture, motion and shape; tracking; biomedical image analysis; biometrics; face recognition; image coding, compression and encryption; and applications.




Computational and Statistical Methods in Intelligent Systems


Book Description

This book presents real-world problems and pioneering research in computational statistics, mathematical modeling, artificial intelligence and software engineering in the context of intelligent systems. It gathers the peer-reviewed proceedings of the 2nd Computational Methods in Systems and Software 2018 (CoMeSySo 2018), a conference that broke down traditional barriers by being held online. The goal of the event was to provide an international forum for discussing the latest high-quality research results.




Wavelets in Functional Data Analysis


Book Description

Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.




Computer Vision in Control Systems-1


Book Description

This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: · Morphological Image Analysis for Computer Vision Applications. · Methods for Detecting of Structural Changes in Computer Vision Systems. · Hierarchical Adaptive KL-based Transform: Algorithms and Applications. · Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. · A Way of Energy Analysis for Image and Video Sequence Processing. · Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. · Scene Analysis Using Morphological Mathematics and Fuzzy Logic. · Digital Video Stabilization in Static and Dynamic Scenes. · Implementation of Hadamard Matrices for Image Processing. · A Generalized Criterion of Efficiency for Telecommunication Systems. The book is directed to PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.