Statistical Inference for Spatial Poisson Processes


Book Description

This work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too.




Statistical Inference and Simulation for Spatial Point Processes


Book Description

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.




Statistical Inference for Spatial Processes


Book Description

The study of spatial processes and their applications is an important topic in statistics and finds wide application particularly in computer vision and image processing. This book is devoted to statistical inference in spatial statistics and is intended for specialists needing an introduction to the subject and to its applications. One of the themes of the book is the demonstration of how these techniques give new insights into classical procedures (including new examples in likelihood theory) and newer statistical paradigms such as Monte-Carlo inference and pseudo-likelihood. Professor Ripley also stresses the importance of edge effects and of lack of a unique asymptotic setting in spatial problems. Throughout, the author discusses the foundational issues posed and the difficulties, both computational and philosophical, which arise. The final chapters consider image restoration and segmentation methods and the averaging and summarising of images. Thus, the book will find wide appeal to researchers in computer vision, image processing, and those applying microscopy in biology, geology and materials science, as well as to statisticians interested in the foundations of their discipline.




Theory of Spatial Statistics


Book Description

Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.




Spatial Point Patterns


Book Description

Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th




Statistical Analysis and Modelling of Spatial Point Patterns


Book Description

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.




Scan Statistics


Book Description

In many statistical applications, scientists have to analyze the occurrence of observed clusters of events in time or space. Scientists are especially interested in determining whether an observed cluster of events has occurred by chance if it is assumed that the events are distributed independently and uniformly over time or space. Scan statistics have relevant applications in many areas of science and technology including geology, geography, medicine, minefield detection, molecular biology, photography, quality control and reliability theory and radio-optics.




Point Processes and Their Statistical Inference


Book Description

Maintaining the excellent features that made the first edition so popular, this outstanding reference/text presents the only comprehensive treatment of the theory of point processes and statistical inference for point processes-highlighting both pointprocesses on the real line and sp;,.tial point processes. Thoroughly updated and revised to reflect changes since publication of the firstedition, the expanded Second EdiLion now contains a better organized and easierto-understand treatment of stationary point processes ... expanded treatment ofthe multiplicative intensity model ... expanded treatment of survival analysis . ..broadened consideration of applications ... an expanded and extended bibliographywith over 1,000 references ... and more than 3('() end-of-chapter exercises.




Introduction to the Statistics of Poisson Processes and Applications


Book Description

This book covers an extensive class of models involving inhomogeneous Poisson processes and deals with their identification, i.e. the solution of certain estimation or hypothesis testing problems based on the given dataset. These processes are mathematically easy-to-handle and appear in numerous disciplines, including astronomy, biology, ecology, geology, seismology, medicine, physics, statistical mechanics, economics, image processing, forestry, telecommunications, insurance and finance, reliability, queuing theory, wireless networks, and localisation of sources. Beginning with the definitions and properties of some fundamental notions (stochastic integral, likelihood ratio, limit theorems, etc.), the book goes on to analyse a wide class of estimators for regular and singular statistical models. Special attention is paid to problems of change-point type, and in particular cusp-type change-point models, then the focus turns to the asymptotically efficient nonparametric estimation of the mean function, the intensity function, and of some functionals. Traditional hypothesis testing, including some goodness-of-fit tests, is also discussed. The theory is then applied to three classes of problems: misspecification in regularity (MiR),corresponding to situations where the chosen change-point model and that of the real data have different regularity; optical communication with phase and frequency modulation of periodic intensity functions; and localization of a radioactive (Poisson) source on the plane using K detectors. Each chapter concludes with a series of problems, and state-of-the-art references are provided, making the book invaluable to researchers and students working in areas which actively use inhomogeneous Poisson processes.




Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA


Book Description

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.