Statistical Genetics


Book Description

Statistical Genetics is an advanced textbook focusing on conducting genome-wide linkage and association analysis in order to identify the genes responsible for complex behaviors and diseases. Starting with an introductory section on statistics and quantitative genetics, it covers both established and new methodologies, providing the genetic and statistical theory on which they are based. Each chapter is written by leading researchers, who give the reader the benefit of their experience with worked examples, study design, and sources of error. The text can be used in conjunction with an associated website (www.genemapping.org) that provides supplementary material and links to downloadable software.




Statistical Methods in Genetic Epidemiology


Book Description

This well-organized and clearly written text has a unique focus on methods of identifying the joint effects of genes and environment on disease patterns. It follows the natural sequence of research, taking readers through the study designs and statistical analysis techniques for determining whether a trait runs in families, testing hypotheses about whether a familial tendency is due to genetic or environmental factors or both, estimating the parameters of a genetic model, localizing and ultimately isolating the responsible genes, and finally characterizing their effects in the population. Examples from the literature on the genetic epidemiology of breast and colorectal cancer, among other diseases, illustrate this process. Although the book is oriented primarily towards graduate students in epidemiology, biostatistics and human genetics, it will also serve as a comprehensive reference work for researchers. Introductory chapters on molecular biology, Mendelian genetics, epidemiology, statistics, and population genetics will help make the book accessible to those coming from one of these fields without a background in the others. It strikes a good balance between epidemiologic study designs and statistical methods of data analysis.







Approaches to Gene Mapping in Complex Human Diseases


Book Description

Overview of mapping common and genetically complex human disease traits (J. L. Haines, M. A. Pericak-Vance). Basic concepts in genetics (M. C. Speer). Defining disease phenotypes (A. S. Aylsworth). Basic concepts in linkage analysis ( M. A. Pericak-Vance). Determining the genetic component of a disease (L. A. Farrer, L. A. Cupples). Patient and family participation in genetic research studies (P. E. Cohen, C. Wolpert). Sample size and power (M. C. Speer). The collection of biological samples for DNA analysis (J. M. Vance). Methods of genotyping (J. M. Vance, K. B. Othmane). Database design for gene mapping studies (C. Haynes, C. Blach). Genomic screening (J. L. Haines). Lod score analysis (J. Xu, D. A. Meyers, M. A. Pericak-Vance). Sib pair analysis (D. E. Goldgar). Affected relative pair analysis (J. L. Haines). Linkage disequilibrium and allelic association (M. A. Pericak-Vance). Using public databases (J. L. Haines). Laboratory approaches toward gene identification (D. A. Marchuk). Examining complex genetic interactions (J. M. Schildkraut). Glossary. Appendix: useful websites for genetic analysis. Index.




Analysis of Complex Disease Association Studies


Book Description

According to the National Institute of Health, a genome-wide association study is defined as any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or absence of a disease or condition. Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying genetic variants that contribute to health and disease. This burgeoning science merges the principles of statistics and genetics studies to make sense of the vast amounts of information available with the mapping of genomes. In order to make the most of the information available, statistical tools must be tailored and translated for the analytical issues which are original to large-scale association studies. Analysis of Complex Disease Association Studies will provide researchers with advanced biological knowledge who are entering the field of genome-wide association studies with the groundwork to apply statistical analysis tools appropriately and effectively. With the use of consistent examples throughout the work, chapters will provide readers with best practice for getting started (design), analyzing, and interpreting data according to their research interests. Frequently used tests will be highlighted and a critical analysis of the advantages and disadvantage complimented by case studies for each will provide readers with the information they need to make the right choice for their research. Additional tools including links to analysis tools, tutorials, and references will be available electronically to ensure the latest information is available. Easy access to key information including advantages and disadvantage of tests for particular applications, identification of databases, languages and their capabilities, data management risks, frequently used tests Extensive list of references including links to tutorial websites Case studies and Tips and Tricks




The Statistics of Gene Mapping


Book Description

This book details the statistical concepts used in gene mapping, first in the experimental context of crosses of inbred lines and then in outbred populations, primarily humans. It presents elementary principles of probability and statistics, which are implemented by computational tools based on the R programming language to simulate genetic experiments and evaluate statistical analyses. Each chapter contains exercises, both theoretical and computational, some routine and others that are more challenging. The R programming language is developed in the text.




Mathematical and Statistical Methods for Genetic Analysis


Book Description

Geneticists now stand on the threshold of sequencing the genome in its entirety. The unprecedented insights into human disease and evolution offered by mapping and sequencing are transforming medicine and agriculture. This revolution depends vitally on the contributions made by applied mathematicians, statisticians, and computer scientists. Kenneth Lange has written a book to enable graduate students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand-in-hand with applications to gene mapping, risk prediction, and the testing of epidemiological hypotheses. The book covers many topics previously only accessible in journal articles, such as pedigree analysis algorithms, Markov chain, Monte Carlo methods, reconstruction of evolutionary trees, radiation hybrid mapping, and models of recombination. The whole is backed by numerous exercise sets.




Genetic Analysis of Complex Disease


Book Description

Genetic Analysis of Complex Diseases An up-to-date and complete treatment of the strategies, designs and analysis methods for studying complex genetic disease in human beings In the newly revised Third Edition of Genetic Analysis of Complex Diseases, a team of distinguished geneticists delivers a comprehensive introduction to the most relevant strategies, designs and methods of analysis for the study of complex genetic disease in humans. The book focuses on concepts and designs, thereby offering readers a broad understanding of common problems and solutions in the field based on successful applications in the design and execution of genetic studies. This edited volume contains contributions from some of the leading voices in the area and presents new chapters on high-throughput genomic sequencing, copy-number variant analysis and epigenetic studies. Providing clear and easily referenced overviews of the considerations involved in genetic analysis of complex human genetic disease, including sampling, design, data collection, linkage and association studies and social, legal and ethical issues. Genetic Analysis of Complex Diseases also provides: A thorough introduction to study design for the identification of genes in complex traits Comprehensive explorations of basic concepts in genetics, disease phenotype definition and the determination of the genetic components of disease Practical discussions of modern bioinformatics tools for analysis of genetic data Reflecting on responsible conduct of research in genetic studies, as well as linkage analysis and data management New expanded chapter on complex genetic interactions This latest edition of Genetic Analysis of Complex Diseases is a must-read resource for molecular biologists, human geneticists, genetic epidemiologists and pharmaceutical researchers. It is also invaluable for graduate students taking courses in statistical genetics or genetic epidemiology.