Statistical Methods for Industrial Process Control


Book Description

To practice engineering effectively, engineers must need to have a working knowledge of statistical concepts and methods. What they do not need is a background heavy on statistical theory and number crunching. Statistical Methods for Industrial Process Control provides the practical statistics foundation engineers can immediately apply to the work they do every day, regardless of their industry or specialty. The author illustrates statistical concepts and methods with authentic semiconductor manufacturing process examples-integrated circuit fabrication is an exceedingly rich medium for communicating statistical concepts. However, once learned, these concepts and methods can easily be extended and applied to a variety of other industries. The text emphasizes the application of statistical tools, rather than statistical theory. Modern advances in statistical software have made tedious computations and formula memorization unnecessary. Therefore, the author demonstrates software use throughout the book and supplies MINITAB examples and SAS programs. Review problems at the end of each chapter challenge and deepen readers' understanding of the material. Statistical Methods for Industrial Process Control addresses topics that support the work engineers do, rather than educate them as statisticians, and these topics also reflect modern usage. It effectively introduces novice engineers to a fascinating industry and enables experienced engineers to build upon their existing knowledge and learn new skills.




Multivariate Statistical Process Control with Industrial Applications


Book Description

Detailed coverage of the practical aspects of multivariate statistical process control (MVSPC) based on the application of Hotelling's T2 statistic. MVSPC is the application of multivariate statistical techniques to improve the quality and productivity of an industrial process. Provides valuable insight into the T2 statistic.




Statistical Methods for Six Sigma


Book Description

A guide to achieving business successes through statistical methods Statistical methods are a key ingredient in providing data-based guidance to research and development as well as to manufacturing. Understanding the concepts and specific steps involved in each statistical method is critical for achieving consistent and on-target performance. Written by a recognized educator in the field, Statistical Methods for Six Sigma: In R&D and Manufacturing is specifically geared to engineers, scientists, technical managers, and other technical professionals in industry. Emphasizing practical learning, applications, and performance improvement, Dr. Joglekar?s text shows today?s industry professionals how to: Summarize and interpret data to make decisions Determine the amount of data to collect Compare product and process designs Build equations relating inputs and outputs Establish specifications and validate processes Reduce risk and cost-of-process control Quantify and reduce economic loss due to variability Estimate process capability and plan process improvements Identify key causes and their contributions to variability Analyze and improve measurement systems This long-awaited guide for students and professionals in research, development, quality, and manufacturing does not presume any prior knowledge of statistics. It covers a large number of useful statistical methods compactly, in a language and depth necessary to make successful applications. Statistical methods in this book include: variance components analysis, variance transmission analysis, risk-based control charts, capability and performance indices, quality planning, regression analysis, comparative experiments, descriptive statistics, sample size determination, confidence intervals, tolerance intervals, and measurement systems analysis. The book also contains a wealth of case studies and examples, and features a unique test to evaluate the reader?s understanding of the subject.




Multivariate Statistical Process Control


Book Description

Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas. Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be interested in this book. It can also be used to provide supplementary material and industrial insight for graduate and advanced undergraduate students, and graduate engineers. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Introduction to Statistical Process Control


Book Description

A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon




Statistical Process Control for Real-World Applications


Book Description

The normal or bell curve distribution is far more common in statistics textbooks than it is in real factories, where processes follow non-normal and often highly skewed distributions. Statistical Process Control for Real-World Applications shows how to handle non-normal applications scientifically and explain the methodology to suppliers and custom




Statistical Process Control in Industry


Book Description

During the past decade interest in quality management has greatly increased. One of the central elements of Total Quality Management is Statistical Process Control, more commonly known as SPC. This book describes the pitfalls and traps which businesses encounter when implementing and assuring SPC. Illustrations are given from practical experience in various companies. The following subjects are discussed: implementation of SPC, activity plan for achieving statistically controlled processes, statistical tools, and lastly, consolidation and improvement of the results. Also, an extensive checklist is provided with which a business can determine to what extent it has succeeded in the actual application of SPC. Audience: This volume is written for companies which are going to implement SPC, or which need a new impetus in order to get SPC properly off the ground. It will be of interest in particular to researchers whose work involves statistics and probability, production, operation and manufacturing management, industrial organisation and mathematical and quantitative methods. It will also appeal to specialists in engineering and management, for example in the electronic industry, discrete parts industry, process industry, automotive and aircraft industry and food industry.




Statistical Process Control in Manufacturing Practice


Book Description

Emphasizing the importance of understanding and reducing process variation to achieve quality manufacturing performance, this work establishes how statistical process control (SPC) provides powerful tools for measuring and regulating manufacturing processes. It presents information derived from time-tested applications of SPC techniques at on-site process situations in manufacturing. It is designed to assist manufacturing organizations in explaining and implementing successful SPC programmes.




Measuring the Software Process


Book Description

"While it is usually helpful to launch improvement programs, many such programs soon get bogged down in detail. They either address the wrong problems, or they keep beating on the same solutions, wondering why things don't improve. This is when you need an objective way to look at the problems. This is the time to get some data." Watts S. Humphrey, from the Foreword This book, drawing on work done at the Software Engineering Institute and other organizations, shows how to use measurements to manage and improve software processes. The authors explain specifically how quality characteristics of software products and processes can be quantified, plotted, and analyzed so the performance of software development activities can be predicted, controlled, and guided to achieve both business and technical goals. The measurement methods presented, based on the principles of statistical quality control, are illuminated by application examples taken from industry. Although many of the methods discussed are applicable to individual projects, the book's primary focus is on the steps software development organizations can take toward broad-reaching, long-term success. The book particularly addresses the needs of software managers and practitioners who have already set up some kind of basic measurement process and are ready to take the next step by collecting and analyzing software data as a basis for making process decisions and predicting process performance. Highlights of the book include: Insight into developing a clear framework for measuring process behavior Discussions of process performance, stability, compliance, capability, and improvement Explanations of what you want to measure (and why) and instructions on how to collect your data Step-by-step guidance on how to get started using statistical process control If you have responsibilities for product quality or process performance and you are ready to use measurements to manage, control, and predict your software processes, this book will be an invaluable resource.




Nonparametric Statistical Process Control


Book Description

A unique approach to understanding the foundations of statistical quality control with a focus on the latest developments in nonparametric control charting methodologies Statistical Process Control (SPC) methods have a long and successful history and have revolutionized many facets of industrial production around the world. This book addresses recent developments in statistical process control bringing the modern use of computers and simulations along with theory within the reach of both the researchers and practitioners. The emphasis is on the burgeoning field of nonparametric SPC (NSPC) and the many new methodologies developed by researchers worldwide that are revolutionizing SPC. Over the last several years research in SPC, particularly on control charts, has seen phenomenal growth. Control charts are no longer confined to manufacturing and are now applied for process control and monitoring in a wide array of applications, from education, to environmental monitoring, to disease mapping, to crime prevention. This book addresses quality control methodology, especially control charts, from a statistician’s viewpoint, striking a careful balance between theory and practice. Although the focus is on the newer nonparametric control charts, the reader is first introduced to the main classes of the parametric control charts and the associated theory, so that the proper foundational background can be laid. Reviews basic SPC theory and terminology, the different types of control charts, control chart design, sample size, sampling frequency, control limits, and more Focuses on the distribution-free (nonparametric) charts for the cases in which the underlying process distribution is unknown Provides guidance on control chart selection, choosing control limits and other quality related matters, along with all relevant formulas and tables Uses computer simulations and graphics to illustrate concepts and explore the latest research in SPC Offering a uniquely balanced presentation of both theory and practice, Nonparametric Methods for Statistical Quality Control is a vital resource for students, interested practitioners, researchers, and anyone with an appropriate background in statistics interested in learning about the foundations of SPC and latest developments in NSPC.