Statistical Analysis of Gene Expression Microarray Data


Book Description

Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies




Microarray Gene Expression Data Analysis


Book Description

This guide covers aspects of designing microarray experiments and analysing the data generated, including information on some of the tools that are available from non-commercial sources. Concepts and principles underpinning gene expression analysis are emphasised and wherever possible, the mathematics has been simplified. The guide is intended for use by graduates and researchers in bioinformatics and the life sciences and is also suitable for statisticians who are interested in the approaches currently used to study gene expression. Microarrays are an automated way of carrying out thousands of experiments at once, and allows scientists to obtain huge amounts of information very quickly Short, concise text on this difficult topic area Clear illustrations throughout Written by well-known teachers in the subject Provides insight into how to analyse the data produced from microarrays




Statistics and Data Analysis for Microarrays Using R and Bioconductor


Book Description

Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on,




Analyzing Microarray Gene Expression Data


Book Description

A multi-discipline, hands-on guide to microarray analysis of biological processes Analyzing Microarray Gene Expression Data provides a comprehensive review of available methodologies for the analysis of data derived from the latest DNA microarray technologies. Designed for biostatisticians entering the field of microarray analysis as well as biologists seeking to more effectively analyze their own experimental data, the text features a unique interdisciplinary approach and a combined academic and practical perspective that offers readers the most complete and applied coverage of the subject matter to date. Following a basic overview of the biological and technical principles behind microarray experimentation, the text provides a look at some of the most effective tools and procedures for achieving optimum reliability and reproducibility of research results, including: An in-depth account of the detection of genes that are differentially expressed across a number of classes of tissues Extensive coverage of both cluster analysis and discriminant analysis of microarray data and the growing applications of both methodologies A model-based approach to cluster analysis, with emphasis on the use of the EMMIX-GENE procedure for the clustering of tissue samples The latest data cleaning and normalization procedures The uses of microarray expression data for providing important prognostic information on the outcome of disease




Statistical Methods for Microarray Data Analysis


Book Description

Microarrays for simultaneous measurement of redundancy of RNA species are used in fundamental biology as well as in medical research. Statistically,a microarray may be considered as an observation of very high dimensionality equal to the number of expression levels measured on it. In Statistical Methods for Microarray Data Analysis: Methods and Protocols, expert researchers in the field detail many methods and techniques used to study microarrays, guiding the reader from microarray technology to statistical problems of specific multivariate data analysis. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Statistical Methods for Microarray Data Analysis: Methods and Protocols aids scientists in continuing to study microarrays and the most current statistical methods.




Statistics for Microarrays


Book Description

Interest in microarrays has increased considerably in the last ten years. This increase in the use of microarray technology has led to the need for good standards of microarray experimental notation, data representation, and the introduction of standard experimental controls, as well as standard data normalization and analysis techniques. Statistics for Microarrays: Design, Analysis and Inference is the first book that presents a coherent and systematic overview of statistical methods in all stages in the process of analysing microarray data – from getting good data to obtaining meaningful results. Provides an overview of statistics for microarrays, including experimental design, data preparation, image analysis, normalization, quality control, and statistical inference. Features many examples throughout using real data from microarray experiments. Computational techniques are integrated into the text. Takes a very practical approach, suitable for statistically-minded biologists. Supported by a Website featuring colour images, software, and data sets. Primarily aimed at statistically-minded biologists, bioinformaticians, biostatisticians, and computer scientists working with microarray data, the book is also suitable for postgraduate students of bioinformatics.




Microarray Data Analysis


Book Description

This meticulous book explores the leading methodologies, techniques, and tools for microarray data analysis, given the difficulty of harnessing the enormous amount of data. The book includes examples and code in R, requiring only an introductory computer science understanding, and the structure and the presentation of the chapters make it suitable for use in bioinformatics courses. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of key detail and expert implementation advice that ensures successful results and reproducibility. Authoritative and practical, Microarray Data Analysis is an ideal guide for students or researchers who need to learn the main research topics and practitioners who continue to work with microarray datasets.




Analysis of Microarray Gene Expression Data


Book Description

After genomic sequencing, microarray technology has emerged as a widely used platform for genomic studies in the life sciences. Microarray technology provides a systematic way to survey DNA and RNA variation. With the abundance of data produced from microarray studies, however, the ultimate impact of the studies on biology will depend heavily on data mining and statistical analysis. The contribution of this book is to provide readers with an integrated presentation of various topics on analyzing microarray data.




Exploration and Analysis of DNA Microarray and Protein Array Data


Book Description

A cutting-edge guide to the analysis of DNA microarray data Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity. Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage. Highlights of the text include: A review of basic molecular biology, followed by an introduction to microarrays and their preparation Chapters on processing scanned images and preprocessing microarray data Methods for identifying differentially expressed genes in comparative microarray experiments Discussions of gene and sample clustering and class prediction Extension of analysis methods to protein array data Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.




The Analysis of Gene Expression Data


Book Description

This book presents practical approaches for the analysis of data from gene expression micro-arrays. It describes the conceptual and methodological underpinning for a statistical tool and its implementation in software. The book includes coverage of various packages that are part of the Bioconductor project and several related R tools. The materials presented cover a range of software tools designed for varied audiences.