Statistical Methods in the Atmospheric Sciences


Book Description

Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. - Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting - Many worked examples - End-of-chapter exercises, with answers provided




Statistical Methods in the Atmospheric Sciences


Book Description

This revised and expanded text explains the latest statistical methods that are being used to describe, analyze, test, and forecast atmospheric data. It features numerous worked examples, illustrations, equations, and exercises with separate solutions. The book will help advanced students and professionals understand and communicate what their data sets have to say, and make sense of the scientific literature in meteorology, climatology, and related disciplines.




Statistical Methods in the Atmospheric Sciences


Book Description

Statistical Methods in the Atmospheric Sciences, Second Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. * Presents and explains techniques used in atmospheric data summarization, analysis, testing, and forecasting* Features numerous worked examples and exercises* Covers Model Output Statistic (MOS) with an introduction to the Kalman filter, an approach that tolerates frequent model changes* Includes a detailed section on forecast verificationNew in this Edition:* Expanded treatment of resampling tests and coverage of key analysis techniques* Updated treatment of ensemble forecasting* Edits and revisions throughout the text plus updated references




Statistical Methods for Climate Scientists


Book Description

An accessible introduction to statistical methods for students in the climate sciences.




Statistical Methods in the Atmospheric Sciences


Book Description

This book introduces and explains the statistical methods used to describe, analyze, test, and forecast atmospheric data. It will be useful to students, scientists, and other professionals who seek to make sense of the scientific literature in meteorology, climatology, or other geophysical disciplines, or to understand and communicate what their atmospheric data sets have to say. The book includes chapters on exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, time(series analysis, and multivariate data analysis. Worked examples, exercises, and illustrations facilitate understanding of the material; an extensive and up-to-date list of references allows the reader to pursue selected topics in greater depth.Key Features* Presents and explains techniques used in atmospheric data summarization, analysis, testing, and forecasting* Includes extensive and up-to-date references* Features numerous worked examples and exercises* Contains over 130 illustrations




Methods and Applications of Statistics in the Atmospheric and Earth Sciences


Book Description

Explore the classic and cutting-edge quantitative methods for understanding environmental science research Based on the multifaceted 16-volume Encyclopedia of Statistical Sciences, Second Edition, Methods and Applications of Statistics in the Atmospheric and Earth Sciences offers guidance on the application of statistical methods for conducting research in these fields of study. With contributions from more than 100 leading experts in academia and industry, this volume combines key articles from the Encyclopedia with newly developed topics addressing some of the more critical issues, including pollution, droughts, and volcanic activity. Readers will gain a thorough understanding of cutting-edge methods for the acquisition and analysis of data across a wide range of subject areas, from geophysics, geology, and biogeography to meteorology, forestry, agriculture, animal science, and ornithology. The book features new and updated content on quantitative methods and their use in understanding the latest topics in social research, including: Drought Analysis and Forecasting Childhood Obesity Ranked Set Sampling Methodology for Environmental Data Species Richness and Shared Species Richness Geographic Information Systems Each contribution offers authoritative yet easily accessible coverage of statistical concepts. With updated references and discussion of emerging topics, readers are provided with the various statistical methods, techniques, strategies, and applications that are essential for tackling critical issues in environmental science research. Featuring a balance of classical and cutting-edge methodologies, Methods and Applications of Statistics in the Atmospheric and Earth Sciences is an excellent resource for researchers, professionals, and students in the fields of sociology, psychology, philosophy, education, political science, and the related disciplines who would like to learn about the uses of statistics in gathering, reporting, and analyzing data.




Statistical Analysis in Climate Research


Book Description

Climatology is, to a large degree, the study of the statistics of our climate. The powerful tools of mathematical statistics therefore find wide application in climatological research. The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialised techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research. Suitable for graduate courses on statistics for climatic, atmospheric and oceanic science, this book will also be valuable as a reference source for researchers in climatology, meteorology, atmospheric science, and oceanography.




Statistical Analysis of Climate Extremes


Book Description

The risks posed by climate change and its effect on climate extremes are an increasingly pressing societal problem. This book provides an accessible overview of the statistical analysis methods which can be used to investigate climate extremes and analyse potential risk. The statistical analysis methods are illustrated with case studies on extremes in the three major climate variables: temperature, precipitation, and wind speed. The book also provides datasets and access to appropriate analysis software, allowing the reader to replicate the case study calculations. Providing the necessary tools to analyse climate risk, this book is invaluable for students and researchers working in the climate sciences, as well as risk analysts interested in climate extremes.




Climate Time Series Analysis


Book Description

Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.




Probability, Statistics, And Decision Making In The Atmospheric Sciences


Book Description

Methodology drawn from the fields of probability. statistics and decision making plays an increasingly important role in the atmosphericsciences. both in basic and applied research and in experimental and operational studies. Applications of such methodology can be found in almost every facet of the discipline. from the most theoretical and global (e.g., atmospheric predictability. global climate modeling) to the most practical and local (e.g., crop-weather modeling forecast evaluation). Almost every issue of the multitude of journals published by the atmospheric sciences community now contain some or more papers involving applications of concepts and/or methodology from the fields of probability and statistics. Despite the increasingly pervasive nature of such applications. very few book length treatments of probabilistic and statistical topics of particular interest to atmospheric scientists have appeared (especially inEnglish) since the publication of the pioneering works of Brooks andCarruthers (Handbook of Statistical Methods in Meteorology) in 1953 and Panofsky and Brier-(some Applications of)statistics to Meteor) in 1958. As a result. many relatively recent developments in probability and statistics are not well known to atmospheric scientists and recent work in active areas of meteorological research involving significant applications of probabilistic and statistical methods are not familiar to the meteorological community as a whole.