Nanoscale Photonic Imaging


Book Description

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.




Comprehensive Biomedical Physics


Book Description

Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Photoacoustic Tomography


Book Description




Handbook of Mathematical Methods in Imaging


Book Description

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.










An Introduction to Sparse Stochastic Processes


Book Description

Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and that admit a parsimonious representation in a matched wavelet-like basis. Two key themes are the statistical property of infinite divisibility, which leads to two distinct types of behaviour - Gaussian and sparse - and the structural link between linear stochastic processes and spline functions, which is exploited to simplify the mathematical analysis. The core of the book is devoted to investigating sparse processes, including a complete description of their transform-domain statistics. The final part develops practical signal-processing algorithms that are based on these models, with special emphasis on biomedical image reconstruction. This is an ideal reference for graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.




Boundary Value Problems for Transport Equations


Book Description

In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].




Modern Multivariate Statistical Techniques


Book Description

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.