Statistical Physics of Macromolecules


Book Description

This text presents an introduction to the field of statistical physics of macromolecules, from the basic concepts to modern achievements. Applications in various fields of polymer physical chemistry and molecular biophysics are also covered, as are: the fundamentals of statistical theory of polymer solutions and melts; classical, sealing and renormalization group approaches; the main ideas of statistical theories of polymer liquid crystals, polymer networks and polyelectrolytes; dynamic viscoelastic behavior of polymer systems; models of house, Zimm and reptation concepts; and specific features of main biopolymers - DNA and proteins. This English edition also includes sections describing the most important recent advances such as: statistical theory of DNA gel-electrophoresis, polymers at interfaces, and dynamics of concentrated solutions of rigid polymers.




Statistical Physics for Biological Matter


Book Description

This book aims to cover a broad range of topics in statistical physics, including statistical mechanics (equilibrium and non-equilibrium), soft matter and fluid physics, for applications to biological phenomena at both cellular and macromolecular levels. It is intended to be a graduate level textbook, but can also be addressed to the interested senior level undergraduate. The book is written also for those involved in research on biological systems or soft matter based on physics, particularly on statistical physics. Typical statistical physics courses cover ideal gases (classical and quantum) and interacting units of simple structures. In contrast, even simple biological fluids are solutions of macromolecules, the structures of which are very complex. The goal of this book to fill this wide gap by providing appropriate content as well as by explaining the theoretical method that typifies good modeling, namely, the method of coarse-grained descriptions that extract the most salient features emerging at mesoscopic scales. The major topics covered in this book include thermodynamics, equilibrium statistical mechanics, soft matter physics of polymers and membranes, non-equilibrium statistical physics covering stochastic processes, transport phenomena and hydrodynamics. Generic methods and theories are described with detailed derivations, followed by applications and examples in biology. The book aims to help the readers build, systematically and coherently through basic principles, their own understanding of nonspecific concepts and theoretical methods, which they may be able to apply to a broader class of biological problems.




Thermodynamics and Statistical Mechanics of Macromolecular Systems


Book Description

The structural mechanics of proteins that fold into functional shapes, polymers that aggregate and form clusters, and organic macromolecules that bind to inorganic matter can only be understood through statistical physics and thermodynamics. This book reviews the statistical mechanics concepts and tools necessary for the study of structure formation processes in macromolecular systems that are essentially influenced by finite-size and surface effects. Readers are introduced to molecular modeling approaches, advanced Monte Carlo simulation techniques, and systematic statistical analyses of numerical data. Applications to folding, aggregation, and substrate adsorption processes of polymers and proteins are discussed in great detail. Particular emphasis is placed on the reduction of complexity by coarse-grained modeling, which allows for the efficient, systematic investigation of structural phases and transitions. Providing insight into modern research at this interface between physics, chemistry, biology, and nanotechnology, this book is an excellent reference for graduate students and researchers.







Statistical Physics of Polymers


Book Description

From the reviews: "...This book is a very useful addition to polymer literature, and it is a pleasure to recommend it to the polymer community." (J.E. Mark, University of Cincinnati, POLYMER NEWS)




Physics of Charged Macromolecules


Book Description

A clear and intuitive introduction to the physics of charged macromolecules, from fundamentals to the latest research developments.




Molecular Dynamics Simulations in Statistical Physics: Theory and Applications


Book Description

This book presents computer simulations using molecular dynamics techniques in statistical physics, with a focus on macromolecular systems. The numerical methods are introduced in the form of computer algorithms and can be implemented in computers using any desired computer programming language, such as Fortran 90, C/C++, and others. The book also explains how some of these numerical methods and their algorithms can be implemented in the existing computer programming software of macromolecular systems, such as the CHARMM program. In addition, it examines a number of advanced concepts of computer simulation techniques used in statistical physics as well as biological and physical systems. Discussing the molecular dynamics approach in detail to enhance readers understanding of the use of this method in statistical physics problems, it also describes the equations of motion in various statistical ensembles to mimic real-world experimental conditions. Intended for graduate students and research scientists working in the field of theoretical and computational biophysics, physics and chemistry, the book can also be used by postgraduate students of other disciplines, such as applied mathematics, computer sciences, and bioinformatics. Further, offering insights into fundamental theory, it as a valuable resource for expert practitioners and programmers and those new to the field.




Statistical Mechanics


Book Description

Sufficiently rigorous for introductory or intermediate graduate courses, this text offers a comprehensive treatment of the techniques and limitations of statistical mechanics. 82 figures. 15 tables. 1962 edition.




Statistical Physics of Biomolecules


Book Description

From the hydrophobic effect to protein-ligand binding, statistical physics is relevant in almost all areas of molecular biophysics and biochemistry, making it essential for modern students of molecular behavior. But traditional presentations of this material are often difficult to penetrate. Statistical Physics of Biomolecules: An Introduction brin




A Guide to Monte Carlo Simulations in Statistical Physics


Book Description

This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.