Statistical Rock Physics


Book Description




The Rock Physics Handbook


Book Description

A significantly expanded new edition of this practical guide to rock physics and geophysical interpretation for reservoir geophysicists and engineers.







The Rock Physics Handbook


Book Description

The Rock Physics Handbook addresses the relationships between geophysical observations and the underlying physical properties of rocks. It distills a vast quantity of background theory and laboratory results into a series of concise chapters that provide practical solutions to problems in geophysical data interpretation. This expanded second edition presents major new chapters on statistical rock physics and velocity-porosity-clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, borehole waves, models for fractured media, poroelastic models, and attenuation models. This new edition also provides an enhanced set of appendices with key empirical results, data tables, and an atlas of reservoir rock properties - extended to include carbonates, clays, gas hydrates, and heavy oils. Supported by a website hosting MATLAB® routines for implementing the various rock physics formulas, this book is a vital resource for advanced students and university faculty, as well as petroleum industry geophysicists and engineers.




Quantitative Seismic Interpretation


Book Description

Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.




The Rock Physics Handbook


Book Description

Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.




The Rock Physics Handbook


Book Description




Seismic Reflections of Rock Properties


Book Description

An accessible guide to using the rock physics-based forward modeling approach for seismic subsurface mapping, for researchers and petroleum geologists.




The Rock Physics Handbook


Book Description

This fully updated text addresses the relationships between geophysical observations and the underlying physical properties of rocks. It distills a vast quantity of background theory and laboratory results into a series of concise chapters that provide practical solutions to problems in geophysical data interpretation. Now in its second edition, major new chapters are presented on statistical rock physics and velocity-porosity-clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, borehole waves, models for fractured media, poroelastic models, and attenuation models.




Fundamentals of Rock Physics


Book Description

Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.