Statistical Methods for Geography


Book Description

Statistical Methods for Geography is the essential introduction for geography students looking to fully understand and apply key statistical concepts and techniques. Now in its fifth edition, this text is an accessible statistics ‘101’ focused on student learning, and includes definitions, examples, and exercises throughout. Fully integrated with online self-assessment exercises and video overviews, it explains everything required to get full credits for any undergraduate statistics module. The fifth edition of this bestselling text includes: · Coverage of descriptive statistics, probability, inferential statistics, hypothesis testing and sampling, variance, correlation, regression analysis, spatial patterns, spatial data reduction using factor analysis and cluster analysis. · New examples from physical geography and additional real-world examples. · Updated in-text and online exercises along with downloadable datasets. This is the only text you’ll need for undergraduate courses in statistical analysis, statistical methods, and quantitative geography.







Statistical Analysis of Geographical Data


Book Description

Statistics Analysis of Geographical Data: An Introduction provides a comprehensive and accessible introduction to the theory and practice of statistical analysis in geography. It covers a wide range of topics including graphical and numerical description of datasets, probability, calculation of confidence intervals, hypothesis testing, collection and analysis of data using analysis of variance and linear regression. Taking a clear and logical approach, this book examines real problems with real data from the geographical literature in order to illustrate the important role that statistics play in geographical investigations. Presented in a clear and accessible manner the book includes recent, relevant examples, designed to enhance the reader’s understanding.




An Introduction to Statistical Problem Solving in Geography


Book Description

Written for undergraduate geography majors and entry-level graduate students with limited backgrounds in statistical analysis and methods, McGrew and Monroe provide a comprehensive and understandable introduction to statistical methods in a problem-solving framework. Engaging examples and problems are drawn from a variety of topical areas in both human and physical geography and are fully integrated into the text. Without compromising statistical rigor or oversimplifying, the authors stress the importance of written narratives that explain each statistical technique. After introducing basic statistical concepts and terminology, the authors focus on nonspatial and spatial descriptive statistics. They transition to inferential problem solving, including probability, sampling, and estimation, before delving deeper into inferential statistics for geographic problem solving. The final chapters examine the related techniques of correlation and regression. A list of major goals and objectives is included at the end of each chapter, allowing students to monitor their own progress and mastery of geographic statistical materials. An epilogue, offering over 150 geographic situations, gives students a chance to figure out which statistical technique should be used for a particular situation.




Data Analysis and Statistics for Geography, Environmental Science, and Engineering


Book Description

Providing a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain




Geographical Data Analysis


Book Description

It is increasingly important for the earth science student to appreciate that the acquisition of skills in statistics and computerised data analysis is as much part of modern geography as work in the field, laboratory or library. In this respect, Geographical Data Analysis aims to link the use of statistical techniques by means of computer software, to the acquisition of geographical-knowledge and the scientific method of enquiry. The book has three objectives: to explain basic statistical techniques and demonstrate their application to quantitative geography; to equip students with the knowledge and skills necessary for carrying out research projects; and to make the link between statistical analysis and the substantive topics taught as part of a geography course. An important innovative feature of the book is its project-orientated approach, which utilises exemplar projects drawn from human and physical geography. Each exemplar project shows the progress from the conception of the initial research through to the formulation of tentative hypotheses and the subsequent statistical analysis. The projects exemplify both primary and secondary methods for collecting geographical data, with the computer-based application of a wide range of statistical techniques. Thus, these projects allow discussion of sample design, data collection and computerisation, and a selection of appropriate statistical techniques. As such, Geographical Data Analysis integrates quantitative and geographical methodologies and provides a thorough understanding of basic statistical techniques for the undergraduate geography student; it will be of use from first year through to final degree dissertations.




Statistical Methods in Water Resources


Book Description

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.




Spatial Analysis Methods and Practice


Book Description

An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.







Spatial Statistics and Geostatistics


Book Description

"Ideal for anyone who wishes to gain a practical understanding of spatial statistics and geostatistics. Difficult concepts are well explained and supported by excellent examples in R code, allowing readers to see how each of the methods is implemented in practice" - Professor Tao Cheng, University College London Focusing specifically on spatial statistics and including components for ArcGIS, R, SAS and WinBUGS, this book illustrates the use of basic spatial statistics and geostatistics, as well as the spatial filtering techniques used in all relevant programs and software. It explains and demonstrates techniques in: spatial sampling spatial autocorrelation local statistics spatial interpolation in two-dimensions advanced topics including Bayesian methods, Monte Carlo simulation, error and uncertainty. It is a systematic overview of the fundamental spatial statistical methods used by applied researchers in geography, environmental science, health and epidemiology, population and demography, and planning. A companion website includes digital R code for implementing the analyses in specific chapters and relevant data sets to run the R codes.