Statistics and Data Analysis for Social Science


Book Description

Apply statistics to your everyday life. Statistics and Data Analysis for Social Science helps students to build a strong foundational understanding of statistics by providing clarity around when and why statistics useful. Rather than focusing on the "how to" of statistics, author Eric J. Krieg simplifies the complexity of statistical calculations by introducing only what is necessary to understanding each concept. Every chapter is written around and applied to a different social problem or issues—enabling students to broaden their imagination about the statistical "tools" that can be used to make sense of our world and, maybe, to make the world a better place. In addition to updating all the tables and examples with new data, the Second Edition has replaced the section on SPSS with three new sets of exercises at the end of each chapter: Chapter Exercises for students complete during their reading and bring questions to class, In-Class Exercises that focus on the areas that students struggled with during their reading, and Homework Exercises that can be assigned if students need extra practice with the concepts.




Statistics and Data Analysis for Social Science


Book Description

For a one-semester, undergraduate introductory course in social statistics. Statistical tools for understanding the social world. This first edition text seeks to answer the question, universally asked by the social science student, Why statistics? The author introduces only those statistical concepts that are necessary to understand, interpret, and present social science research. All concepts are introduced in the context of a social science application, and strong emphasis is placed on demonstrating what data looks like, as opposed to giving theoretical explanations. Complexity of calculations is reduced to those elements necessary for understanding the statistical concept. Optional technology use is paired with the core elements of the course, making this text a pragmatic and engaging introduction to the practice of social statistics.




Data Analysis for Social Science


Book Description

"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--




Quantitative Social Science


Book Description

"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--




Statistics for the Social Sciences


Book Description

Do your students lack confidence in their ability to handle quantitative work? Do they get confused about how to enter statistical data on SAS, SPSS, and Excel programs? The new Third Edition of the bestselling Statistics for the Social Sciences is the solution to these dilemmas Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fearing them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained. The book includes lists of key concepts, chapter exercises, topic boxes, and more




Using R for Data Analysis in Social Sciences


Book Description

Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.




Statistics for the Social Sciences


Book Description

The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.




Introduction to Statistics and Data Analysis


Book Description

Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.




An Introduction to Statistics and Data Analysis Using Stata®


Book Description

An Introduction to Statistics and Data Analysis Using Stata® by Lisa Daniels and Nicholas Minot provides a step-by-step introduction for statistics, data analysis, or research methods classes with Stata. Concise descriptions emphasize the concepts behind statistics for students rather than the derivations of the formulas. With real-world examples from a variety of disciplines and extensive detail on the commands in Stata, this text provides an integrated approach to research design, statistical analysis, and report writing for social science students.




Statistics for the Social Sciences


Book Description

Do your students lack confidence in handling quantitative work? Do they get confused about how to enter statistical data on SAS and SPSS programs? This Second Edition of Mark Sirkin's popular textbook is the solution for these dilemmas. The book progresses from concepts that require little computational work to the more demanding. It emphasizes utilization so that students appreciate the usefulness of statistics and shows how the interpretation of data is related to the methods by which data was obtained. The author includes coverage of the scientific method, levels of measurement and the interpretation of tables.