Statistics for Bioengineering Sciences


Book Description

Through its scope and depth of coverage, this book addresses the needs of the vibrant and rapidly growing engineering fields, bioengineering and biomedical engineering, while implementing software that engineers are familiar with. The author integrates introductory statistics for engineers and introductory biostatistics as a single textbook heavily oriented to computation and hands on approaches. For example, topics ranging from the aspects of disease and device testing, Sensitivity, Specificity and ROC curves, Epidemiological Risk Theory, Survival Analysis, or Logistic and Poisson Regressions are covered. In addition to the synergy of engineering and biostatistical approaches, the novelty of this book is in the substantial coverage of Bayesian approaches to statistical inference. Many examples in this text are solved using both the traditional and Bayesian methods, and the results are compared and commented.




Statistics for Biomedical Engineers and Scientists


Book Description

Statistics for Biomedical Engineers and Scientists: How to Analyze and Visualize Data provides an intuitive understanding of the concepts of basic statistics, with a focus on solving biomedical problems. Readers will learn how to understand the fundamental concepts of descriptive and inferential statistics, analyze data and choose an appropriate hypothesis test to answer a given question, compute numerical statistical measures and perform hypothesis tests 'by hand', and visualize data and perform statistical analysis using MATLAB. Practical activities and exercises are provided, making this an ideal resource for students in biomedical engineering and the biomedical sciences who are in a course on basic statistics.




Nonparametric Statistics with Applications to Science and Engineering


Book Description

A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.




Biomedical Measurement Systems and Data Science


Book Description

Discover the fundamental principles of biomedical measurement design and performance evaluation with this hands-on guide. Whether you develop measurement instruments or use them in novel ways, this practical text will prepare you to be an effective generator and consumer of biomedical data. Designed for both classroom instruction and self-study, it explains how information is encoded into recorded data and can be extracted and displayed in an accessible manner. Describes and integrates experimental design, performance assessment, classification, and system modelling. Combines mathematical concepts with computational models, providing the tools needed to answer advanced biomedical questions. Includes MATLAB® scripts throughout to help readers model all types of biomedical systems, and contains numerous homework problems, with a solutions manual available online. This is an essential text for advanced undergraduate and graduate students in bioengineering, electrical and computer engineering, computer science, medical physics, and anyone preparing for a career in biomedical sciences and engineering.




Engineering Biostatistics


Book Description

Provides a one-stop resource for engineers learning biostatistics using MATLAB® and WinBUGS Through its scope and depth of coverage, this book addresses the needs of the vibrant and rapidly growing bio-oriented engineering fields while implementing software packages that are familiar to engineers. The book is heavily oriented to computation and hands-on approaches so readers understand each step of the programming. Another dimension of this book is in parallel coverage of both Bayesian and frequentist approaches to statistical inference. It avoids taking sides on the classical vs. Bayesian paradigms, and many examples in this book are solved using both methods. The results are then compared and commented upon. Readers have the choice of MATLAB® for classical data analysis and WinBUGS/OpenBUGS for Bayesian data analysis. Every chapter starts with a box highlighting what is covered in that chapter and ends with exercises, a list of software scripts, datasets, and references. Engineering Biostatistics: An Introduction using MATLAB® and WinBUGS also includes: parallel coverage of classical and Bayesian approaches, where appropriate substantial coverage of Bayesian approaches to statistical inference material that has been classroom-tested in an introductory statistics course in bioengineering over several years exercises at the end of each chapter and an accompanying website with full solutions and hints to some exercises, as well as additional materials and examples Engineering Biostatistics: An Introduction using MATLAB® and WinBUGS can serve as a textbook for introductory-to-intermediate applied statistics courses, as well as a useful reference for engineers interested in biostatistical approaches.




Statistics Explained


Book Description

An understanding of statistics and experimental design is essential for life science studies, but many students lack a mathematical background and some even dread taking an introductory statistics course. Using a refreshingly clear and encouraging reader-friendly approach, this book helps students understand how to choose, carry out, interpret and report the results of complex statistical analyses, critically evaluate the design of experiments and proceed to more advanced material. Taking a straightforward conceptual approach, it is specifically designed to foster understanding, demystify difficult concepts and encourage the unsure. Even complex topics are explained clearly, using a pictorial approach with a minimum of formulae and terminology. Examples of tests included throughout are kept simple by using small data sets. In addition, end-of-chapter exercises, new to this edition, allow self-testing. Handy diagnostic tables help students choose the right test for their work and remain a useful refresher tool for postgraduates.




Statistical Modeling for Biomedical Researchers


Book Description

A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.




Computer Simulation and Data Analysis in Molecular Biology and Biophysics


Book Description

This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.




Easy Statistics for Food Science with R


Book Description

Easy Statistics for Food Science with R presents the application of statistical techniques to assist students and researchers who work in food science and food engineering in choosing the appropriate statistical technique. The book focuses on the use of univariate and multivariate statistical methods in the field of food science. The techniques are presented in a simplified form without relying on complex mathematical proofs. This book was written to help researchers from different fields to analyze their data and make valid decisions. The development of modern statistical packages makes the analysis of data easier than before. The book focuses on the application of statistics and correct methods for the analysis and interpretation of data. R statistical software is used throughout the book to analyze the data. - Contains numerous step-by-step tutorials help the reader to learn quickly - Covers the theory and application of the statistical techniques - Shows how to analyze data using R software - Provides R scripts for all examples and figures




Numerical Methods in Biomedical Engineering


Book Description

Numerical Modeling in Biomedical Engineering brings together the integrative set of computational problem solving tools important to biomedical engineers. Through the use of comprehensive homework exercises, relevant examples and extensive case studies, this book integrates principles and techniques of numerical analysis. Covering biomechanical phenomena and physiologic, cell and molecular systems, this is an essential tool for students and all those studying biomedical transport, biomedical thermodynamics & kinetics and biomechanics. - Supported by Whitaker Foundation Teaching Materials Program; ABET-oriented pedagogical layout - Extensive hands-on homework exercises