Statistics for Exercise Science and Health with Microsoft Office Excel


Book Description

This book introduces the use of statistics to solve a variety of problems in exercise science and health and provides readers with a solid foundation for future research and data analysis. Statistics for Exercise Science and Health with Microsoft Office Excel: Aids readers in analyzing their own data using the presented statistical techniques combined with Excel Features comprehensive coverage of hypothesis testing and regression models to facilitate modeling in sports science Utilizes Excel to enhance reader competency in data analysis and experimental designs Includes coverage of both binomial and poison distributions with applications in exercise science and health Provides solved examples and plentiful practice exercises throughout in addition to case studies to illustrate the discussed analytical techniques Contains all needed definitions and formulas to aid readers in understanding different statistical concepts and developing the needed skills to solve research problems




Statistics and Research Methods in Psychology with Excel


Book Description

This book, specifically developed for students of psychology, covers a wide range of topics in statistics and research designs taught in psychology, in particular, and other disciplines like management, sociology, education, home science, and nutrition, in general, in most universities. It explains how to use Excel to analyze research data by elaborating statistical concepts. Each chapter contains sections like “Check you Computing skill” and “Check your Statistical Concepts” to enable students to assess their knowledge in a graded manner. The book addresses one of the major challenges in psychology research, viz., how to measure subjective phenomenon like attitude, desire, and preferences of an individual. Separate emphasis has been given to the measurement techniques which are essential tools to assess these subjective parameters in numerical form, required for statistical analysis to draw meaningful conclusions. The book is equally helpful to students of humanities, life sciences and other applied areas. Consisting of 14 chapters, the book covers all relevant topics of statistics and research designs which are important for students to plan and complete their research work.




Testing Statistical Assumptions in Research


Book Description

Comprehensively teaches the basics of testing statistical assumptions in research and the importance in doing so This book facilitates researchers in checking the assumptions of statistical tests used in their research by focusing on the importance of checking assumptions in using statistical methods, showing them how to check assumptions, and explaining what to do if assumptions are not met. Testing Statistical Assumptions in Research discusses the concepts of hypothesis testing and statistical errors in detail, as well as the concepts of power, sample size, and effect size. It introduces SPSS functionality and shows how to segregate data, draw random samples, file split, and create variables automatically. It then goes on to cover different assumptions required in survey studies, and the importance of designing surveys in reporting the efficient findings. The book provides various parametric tests and the related assumptions and shows the procedures for testing these assumptions using SPSS software. To motivate readers to use assumptions, it includes many situations where violation of assumptions affects the findings. Assumptions required for different non-parametric tests such as Chi-square, Mann-Whitney, Kruskal Wallis, and Wilcoxon signed-rank test are also discussed. Finally, it looks at assumptions in non-parametric correlations, such as bi-serial correlation, tetrachoric correlation, and phi coefficient. An excellent reference for graduate students and research scholars of any discipline in testing assumptions of statistical tests before using them in their research study Shows readers the adverse effect of violating the assumptions on findings by means of various illustrations Describes different assumptions associated with different statistical tests commonly used by research scholars Contains examples using SPSS, which helps facilitate readers to understand the procedure involved in testing assumptions Looks at commonly used assumptions in statistical tests, such as z, t and F tests, ANOVA, correlation, and regression analysis Testing Statistical Assumptions in Research is a valuable resource for graduate students of any discipline who write thesis or dissertation for empirical studies in their course works, as well as for data analysts.




Sports Research with Analytical Solution using SPSS


Book Description

A step-by-step approach to problem-solving techniques using SPSS® in the fields of sports science and physical education Featuring a clear and accessible approach to the methods, processes, and statistical techniques used in sports science and physical education, Sports Research with Analytical Solution using SPSS® emphasizes how to conduct and interpret a range of statistical analysis using SPSS. The book also addresses issues faced by research scholars in these fields by providing analytical solutions to various research problems without reliance on mathematical rigor. Logically arranged to cover both fundamental and advanced concepts, the book presents standard univariate and complex multivariate statistical techniques used in sports research such as multiple regression analysis, discriminant analysis, cluster analysis, and factor analysis. The author focuses on the treatment of various parametric and nonparametric statistical tests, which are shown through the techniques and interpretations of the SPSS outputs that are generated for each analysis. Sports Research with Analytical Solution using SPSS® also features: Numerous examples and case studies to provide readers with practical applications of the analytical concepts and techniques Plentiful screen shots throughout to help demonstrate the implementation of SPSS outputs Illustrative studies with simulated realistic data to clarify the analytical techniques covered End-of-chapter short answer questions, multiple choice questions, assignments, and practice exercises to help build a better understanding of the presented concepts A companion website with associated SPSS data files and PowerPoint® presentations for each chapter Sports Research with Analytical Solution using SPSS® is an excellent textbook for upper-undergraduate, graduate, and PhD-level courses in research methods, kinesiology, sports science, medicine, nutrition, health education, and physical education. The book is also an ideal reference for researchers and professionals in the fields of sports research, sports science, physical education, and social sciences, as well as anyone interested in learning SPSS.




Repeated Measures Design for Empirical Researchers


Book Description

Introduces the applications of repeated measures design processes with the popular IBM® SPSS® software Repeated Measures Design for Empirical Researchers presents comprehensive coverage of the formation of research questions and the analysis of repeated measures using IBM SPSS and also includes the solutions necessary for understanding situations where the designs can be used. In addition to explaining the computation involved in each design, the book presents a unique discussion on how to conceptualize research problems as well as identify appropriate repeated measures designs for research purposes. Featuring practical examples from a multitude of domains including psychology, the social sciences, management, and sports science, the book helps readers better understand the associated theories and methodologies of repeated measures design processes. The book covers various fundamental concepts involved in the design of experiments, basic statistical designs, computational details, differentiating independent and repeated measures designs, and testing assumptions. Along with an introduction to IBM SPSS software, Repeated Measures Design for Empirical Researchers includes: A discussion of the popular repeated measures designs frequently used by researchers, such as one-way repeated measures ANOVA, two-way repeated measures design, two-way mixed design, and mixed design with two-way MANOVA Coverage of sample size determination for the successful implementation of designing and analyzing a repeated measures study A step-by-step guide to analyzing the data obtained with real-world examples throughout to illustrate the underlying advantages and assumptions A companion website with supplementary IBM SPSS data sets and programming solutions as well as additional case studies Repeated Measures Design for Empirical Researchers is a useful textbook for graduate- and PhD-level students majoring in biostatistics, the social sciences, psychology, medicine, management, sports, physical education, and health. The book is also an excellent reference for professionals interested in experimental designs and statistical sciences as well as statistical consultants and practitioners from other fields including biological, medical, agricultural, and horticultural sciences. J. P. Verma, PhD, is Professor of Statistics and Director of the Center for Advanced Studies at Lakshmibai National Institute of Physical Education, India. Professor Verma is an active researcher in sports modeling and data analysis and has conducted many workshops on research methodology, research designs, multivariate analysis, statistical modeling, and data analysis for students of management, physical education, social science, and economics. He is the author of Statistics for Exercise Science and Health with Microsoft® Office Excel®, also published by Wiley.




Data Analysis and Research for Sport and Exercise Science


Book Description

Data Analysis and Research for Sport and Exercise Science is tailored to suit undergraduate sports and exercise science students seeking a clear understanding of data and statistics to support their scientific research. The text is divided into three main areas: Research and Design, Data Analysis and the Interpretation of Findings. Topics covered in the book include: * introduction to the scientific research method * the literature review * developing your research question and experimental design * using statistical analysis to interpret results * presentation of your data * discussing your results and drawing conclusions. Both authors have supervised many student dissertations and have an excellent understanding of the concerns and pitfalls facing those new to this field.







Data Mining for Business Analytics


Book Description

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R




Lipoproteins


Book Description

By typing into databases such as Medline or PubMed the word lipoprotein one gets more than 100.000 hits that highlight the common interest in this topic. It is actually impossible to cover all aspects of lipoprotein structure, function, metabolism and pathophysiology in one issue like the present volume, but attempts have been made to concentrate on topics that are in focus of current lipoprotein research. These topics have been divided into 10 sections. This volume will help new investigators in the field to get acquainted with the general topic of lipoprotein research and will guide scientists interested in this area to emerging new fields.




Measurement for Evaluation in Physical Education and Exercise Science


Book Description

Teaches physical education and exercise science students how to measure and evaluate physical ability. Covers evaluation standards, statistical tools, performance testing, youth fitness, and measuring psychological dimensions of physical education, with chapter objectives and summaries, questions, and activities. Includes a glossary and bandw photos. This fifth edition contains new material on evaluating individuals with disabilities, and an updated chapter on the uses of personal computers in the field. Annotation copyright by Book News, Inc., Portland, OR