Statistics in Psychology Using R and SPSS


Book Description

Statistics in Psychology covers all statistical methods needed in education and research in psychology. This book looks at research questions when planning data sampling, that is to design the intended study and to calculate the sample sizes in advance. In other words, no analysis applies if the minimum size is not determined in order to fulfil certain precision requirements. The book looks at the process of empirical research into the following seven stages: Formulation of the problem Stipulation of the precision requirements Selecting the statistical model for the planning and analysis The (optimal) design of the experiment or survey Performing the experiment or the survey Statistical analysis of the observed results Interpretation of the results.




Learning Statistics with R


Book Description

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com




Statistics for Psychology Using R


Book Description

A unique textbook introducing and demonstrating the use of R in psychology. Statistics for Psychology Using R comprehensively covers standard statistical methods along with advanced topics such as multivariate techniques, factor analysis, and multiple regression widely used in the field of psychology and other social sciences. Its innovative structure and pedagogical approach coupled with numerous worked-out examples and self-assessment tests make it a user-friendly and easy-to-understand companion for students and scholars with limited background in statistics. The standout feature of this textbook is that it demonstrates the application of R—a free, flexible, and dynamically changing software for statistical computing and data analysis, which is becoming increasingly popular across social and behavioral sciences.




A Guide to Doing Statistics in Second Language Research Using SPSS


Book Description

This valuable book shows second language researchers how to use the statistical program SPSS to conduct statistical tests frequently done in SLA research. Using data sets from real SLA studies, A Guide to Doing Statistics in Second Language Research Using SPSS shows newcomers to both statistics and SPSS how to generate descriptive statistics, how to choose a statistical test, and how to conduct and interpret a variety of basic statistical tests. It covers the statistical tests that are most commonly used in second language research, including chi-square, t-tests, correlation, multiple regression, ANOVA and non-parametric analogs to these tests. The text is abundantly illustrated with graphs and tables depicting actual data sets, and exercises throughout the book help readers understand concepts (such as the difference between independent and dependent variables) and work out statistical analyses. Answers to all exercises are provided on the book’s companion website, along with sample data sets and other supplementary material.




Statistics in Psychology Using R and SPSS


Book Description

Statistics in Psychology covers all statistical methods needed in education and research in psychology. This book looks at research questions when planning data sampling, that is to design the intended study and to calculate the sample sizes in advance. In other words, no analysis applies if the minimum size is not determined in order to fulfil certain precision requirements. The book looks at the process of empirical research into the following seven stages: Formulation of the problem Stipulation of the precision requirements Selecting the statistical model for the planning and analysis The (optimal) design of the experiment or survey Performing the experiment or the survey Statistical analysis of the observed results Interpretation of the results.




Moving from IBM® SPSS® to R and RStudio®


Book Description

Are you a researcher or instructor who has been wanting to learn R and RStudio®, but you don′t know where to begin? Do you want to be able to perform all the same functions you use in IBM® SPSS® in R? Is your license to IBM® SPSS® expiring, or are you looking to provide your students guidance to a freely-available statistical software program? Moving from IBM® SPSS® to R and RStudio®: A Statistics Companion is a concise and easy-to-read guide for users who want to know learn how to perform statistical calculations in R. Brief chapters start with a step-by-step introduction to R and RStudio, offering basic installation information and a summary of the differences. Subsequent chapters walk through differences between SPSS and R, in terms of data files, concepts, and structure. Detailed examples provide walk-throughs for different types of data conversions and transformations and their equivalent in R. Helpful and comprehensive appendices provide tables of each statistical transformation in R with its equivalent in SPSS and show what, if any, differences in assumptions factor to into each function. Statistical tests from t-tests to ANOVA through three-factor ANOVA and multiple regression and chi-square are covered in detail, showing each step in the process for both programs. By focusing just on R and eschewing detailed conversations about statistics, this brief guide gives adept SPSS® users just the information they need to transition their data analyses from SPSS to R.




Applied Statistics Using SPSS, STATISTICA and MATLAB


Book Description

Assuming no previous statistics education, this practical reference provides a comprehensive introduction and tutorial on the main statistical analysis topics, demonstrating their solution with the most common software package. Intended for anyone needing to apply statistical analysis to a large variety of science and enigineering problems, the book explains and shows how to use SPSS, MATLAB, STATISTICA and R for analysis such as data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. It concisely explains key concepts and methods, illustrated by practical examples using real data, and includes a CD-ROM with software tools and data sets used in the examples and exercises. Readers learn which software tools to apply and also gain insights into the comparative capabilities of the primary software packages.




IBM SPSS Statistics 19 Made Simple


Book Description

This text combines simplicity and clarity of presentation with a comprehensive treatment of the use of SPSS19 for the analysis and interpretation of data. As in earlier editions, coverage has been extended to address the issues raised by readers since the previous edition.




Interpreting Quantitative Data with SPSS


Book Description

This is a textbook for introductory courses in quantitative research methods across the social sciences. It offers a detailed explanation of introductory statistical techniques and presents an overview of the contexts in which they should be applied.




R for SAS and SPSS Users


Book Description

R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.